Abstract:
Exemplary methods of etching semiconductor substrates may include flowing a halogen-containing precursor into a processing region of a semiconductor processing chamber. The processing region may house a substrate having a conductive material and an overlying mask material. The conductive material may be characterized by a first surface in contact with the mask material, and the mask material may define an edge region of the conductive material. The methods may include contacting the edge region of the conductive material with the halogen-containing precursor and the oxygen-containing precursor. The methods may include etching in a first etching operation the edge region of the conductive material to a partial depth through the conductive material to produce a footing of conductive material protruding along the edge region of the conductive material. The methods may also include removing the footing of conductive material in a second etching operation.
Abstract:
In some embodiments, a method of forming an interconnect structure includes selectively depositing a barrier layer atop a substrate having one or more exposed metal surfaces and one or more exposed dielectric surfaces, wherein a thickness of the barrier layer atop the one or more exposed metal surfaces is greater than the thickness of the barrier layer atop the one or more exposed dielectric surfaces. In some embodiments, a method of forming an interconnect structure includes depositing an etch stop layer comprising aluminum atop a substrate via a physical vapor deposition process; and depositing a barrier layer atop the etch stop layer via a chemical vapor deposition process, wherein the substrate is transferred from a physical vapor deposition chamber after depositing the etch stop layer to a chemical vapor deposition chamber without exposing the substrate to atmosphere.
Abstract:
Exemplary methods of forming a semiconductor structure may include etching a via through a semiconductor structure to expose a first circuit layer interconnect metal. The methods may include forming a layer of a material overlying the exposed first circuit layer interconnect metal. The methods may also include forming a barrier layer within the via having minimal coverage along the bottom of the via. The methods may additionally include forming a second circuit layer interconnect metal overlying the layer of material.
Abstract:
A method of processing a substrate includes: depositing an etch stop layer atop a first dielectric layer; forming a feature in the etch stop layer and the first dielectric layer; depositing a first metal layer to fill the feature; etching the first metal layer to form a recess; depositing a second dielectric layer to fill the recess wherein the second dielectric layer is a low-k material suitable as a metal and oxygen diffusion barrier; forming a patterned mask layer atop the substrate to expose a portion of the second dielectric layer and the etch stop layer; etching the exposed portion of the second dielectric layer to a top surface of the first metal layer to form a via in the second dielectric layer; and depositing a second metal layer atop the substrate, wherein the second metal layer is connected to the first metal layer by the via.
Abstract:
A method of forming an interconnect structure for semiconductor or MEMS structures at a 10 nm Node (16 nm HPCD) down to 5 nm Node (7 nm HPCD), or lower, where the conductive contacts of the interconnect structure are fabricated using solely subtractive techniques applied to conformal layers of conductive materials.
Abstract:
Resistance increase in Cobalt interconnects due to nitridation occurring during removal of surface oxide from Cobalt interconnects and deposition of Nitrogen-containing film on Cobalt interconnects is solved by a Hydrogen thermal anneal or plasma treatment. Removal of the Nitrogen is through a thin overlying layer which may be a dielectric barrier layer or an etch stop layer.
Abstract:
Methods of depositing thin, low dielectric constant layers that are effective diffusion barriers on metal interconnects of semiconductor circuits are described. A self-assembled monolayer (SAM) of molecules each having a head moiety and a tail moiety are deposited on the metal. The SAM molecules self-align, wherein the head moiety is formulated to selectively bond to the metal layer leaving the tail moiety disposed at a distal end of the molecule. A dielectric layer is subsequently deposited on the SAM, chemically bonding to the tail moiety of the SAM molecules.
Abstract:
Exemplary methods of forming a semiconductor structure may include etching a via through a semiconductor structure to expose a first circuit layer interconnect metal. The methods may include forming a layer of a material overlying the exposed first circuit layer interconnect metal. The methods may also include forming a barrier layer within the via having minimal coverage along the bottom of the via. The methods may additionally include forming a second circuit layer interconnect metal overlying the layer of material.
Abstract:
Embodiments of the disclosure advantageously provide semiconductor devices CFET in particular and methods of manufacturing such devices having a fully strained superlattice structure with channel layers that are substantially free of defects and release layers having a reduced selective removal rate. The CFET described herein comprise a vertically stacked superlattice structure on a substrate, the vertically stacked superlattice structure comprising: a first hGAA structure on the substrate; a sacrificial layer on a top surface of the first hGAA structure, the sacrificial layer comprising silicon germanium (SiGe) having a germanium content in a range of from greater than 0% to 50% on an atomic basis; and a second hGAA structure on a top surface of the sacrificial layer. Each of the first hGAA and the second hGAA comprise alternating layers of nanosheet channel layer that comprise silicon (Si) and nanosheet release layer that comprise doped silicon germanium (SiGe).
Abstract:
A method includes forming a planarization layer to a position below an upper transistor device region of a base structure of an electronic device and above a lower transistor device region of the base structure. The base structure includes a plurality of features. The method further includes forming spacer material along the base structure and the planarization layer, modifying the spacer material formed along bottom trenches of the base structure to obtain modified spacer material, and forming a spacer layer by using a wet etch process to remove the modified spacer material. Modifying the spacer material formed along the bottom trenches of the base structure to obtain the modified spacer material includes performing a dry etch process targeting the spacer material formed along the bottom trenches of the base structure.