Abstract:
The current disclosure relates to a semiconductor processing chamber comprising a showerhead, the showerhead comprising a showerplate for providing a reactant into the processing chamber. The processing chamber further comprises a moveable susceptor for holding a substrate; wherein the processing chamber has a showerplate axis extending vertically through the showerplate; a substrate axis extending vertically at a position at which the center of the substrate is configured and arranged to be during providing reactant into the processing chamber; and wherein the substrate axis is offset from the showerhead axis. The disclosure further relates to a semiconductor processing assembly and to a method of treating a semiconductor substrate.
Abstract:
Methods are provided for dual selective deposition of a first material on a first surface of a substrate and a second material on a second, different surface of the same substrate. The selectively deposited materials may be, for example, metal, metal oxide, or dielectric materials.
Abstract:
In accordance with some embodiments herein, apparatuses for deposition of thin films are provided. In some embodiments, a plurality of stations is provided, in which each station provides a different reactant or combination of reactants. The stations can be in gas isolation from each other so as to minimize or prevent undesired chemical vapor deposition (CVD) and/or atomic layer deposition (ALD) reactions between the different reactants or combinations of reactants.
Abstract:
The current disclosure relates to methods of depositing transition metal on a substrate. The disclosure further relates to a transition metal layer, to a structure and to a device comprising a transition metal layer. In the method, transition metal is deposited on a substrate by a cyclical deposition process, and the method comprises providing a substrate in a reaction chamber, providing a transition metal precursor to the reaction chamber in a vapor phase and providing a reactant to the reaction chamber in a vapor phase to form transition metal on the substrate. The transition metal precursor comprises a transition metal from any of groups 4 to 6, and the reactant comprises a group 14 element selected from Si, Ge or Sn.
Abstract:
Methods are provided for selectively depositing a material on a first surface of a substrate relative to a second, different surface of the substrate. The selectively deposited material can be, for example, a metal, metal oxide, or dielectric material.
Abstract:
Methods are provided for dual selective deposition of a first material on a first surface of a substrate and a second material on a second, different surface of the same substrate. The selectively deposited materials may be, for example, metal, metal oxide, or dielectric materials.
Abstract:
In accordance with some embodiments herein, methods for deposition of thin films are provided. In some embodiments, thin film deposition is performed in a plurality of stations, in which each station provides a different reactant or combination of reactants. The stations can be in gas isolation from each other so as to minimize or prevent undesired chemical vapor deposition (CVD) and/or atomic layer deposition (ALD) reactions between the different reactants or combinations of reactants.
Abstract:
Methods are provided for selectively depositing a material on a first surface of a substrate relative to a second, different surface of the substrate. The selectively deposited material can be, for example, a metal, metal oxide, or dielectric material.
Abstract:
The present invention relates to methods of forming silicon nitride thin films on a substrate in a reaction chamber by plasma enhanced atomic layer deposition (PEALD). Exemplary methods include the steps of (i) introducing an octahalotrisilane Si3X8 silicon precursor, such as octachlorotrisilane (OCTS) Si3Cl8, into a reaction space containing a substrate, (ii) introducing a nitrogen containing plasma into the reaction space, and wherein steps (i), (ii) and any steps in between constitute one cycle, and repeating said cycles a plurality of times until an atomic layer nitride film having a desired thickness is obtained.
Abstract translation:本发明涉及通过等离子体增强原子层沉积(PEALD)在反应室中的衬底上形成氮化硅薄膜的方法。 示例性方法包括以下步骤:(i)将八卤代三硅烷Si 3 X 8硅前体如八氯三硅烷(OCTS)Si 3 Cl 8引入到含有底物的反应空间中,(ii)将含氮等离子体引入反应空间,并且其中步骤 ),(ii)和其间的任何步骤构成一个循环,并重复所述循环多次,直到获得具有所需厚度的原子层氮化物膜。