Abstract:
Apparatus and methods for detecting analytes in a sample are provided. The apparatus can include: one or more channels having a detection zone; one or more irradiation sources disposed for irradiating the detection zone with radiation; a detector capable of collecting at least one charge corresponding to an emission beam emitted from the detection zone, the detector having an output; and a time delay integration system coupled to the detector for effecting time delay integration of the at least one charge by accumulating the at least one charge before reading the at least one charge at the output of the detector. Various embodiments provide an apparatus with a multi-notch filter. Various embodiments provide a solid state laser, a micro-wire laser, or an organic light-emitting diode as a irradiation source.
Abstract:
System and method for fluorescent light excitation and detection from samples to enhance the numerical aperture and/or reduce the cross-talk of the fluorescent light.
Abstract:
A method of selecting inks for use in imaging with an imaging apparatus includes determining a maximum usage of a diluted ink for use in conjunction with a saturated ink based on visual perception characteristics relating to a combination of the diluted ink and the saturated ink; generating an initial colorant space based on the maximum usage of the diluted ink, the initial colorant space expressing an initial usage of the diluted ink and an initial usage of the saturated ink at each point in the initial colorant space; optimizing the initial usage of the diluted ink and the initial usage of the saturated ink in the initial colorant space to generate a final usage of the diluted ink and a final usage of the saturated ink in a final colorant space; and generating a color conversion lookup table based on the final colorant space.
Abstract:
An optical system for analyzing light from a plurality of samples is provided. The optical system includes a plurality of holders adapted to have samples located therein, a collection lens, a transmission grating, and a reimaging lens. The collection lens is configured to receive and substantially collimate light from the samples. The transmission grating is configured to spectrally disperse the substantially collimated light from the collection lens. The reimaging lens is configured to receive the light from the light dispersing element and direct the light onto a light detection device. A method of optically analyzing at least one sample is also provided.
Abstract:
An apparatus for detecting analytes in a sample is provided. The apparatus includes: one or more channels having a detection zone; one or more irradiation sources disposed for irradiating the detection zone with non-coherent radiation; a detector array disposed for collecting light signals emitted from markers in the detection zone excited by the radiation, the detector array having an output; and a system coupled to the detector array for effecting time delay integration of the charges on the detector array corresponding to the light signals by accumulating the charges before reading the charges at the output of the detector array. Other apparatus and methods for detecting analytes in a sample are also provided.
Abstract:
A method for correcting color shift in an imaging system, including an imaging object, and a standard color conversion lookup table associated with the imaging object, includes measuring a plurality of test patches to obtain color data associated with the imaging object. A signature color data lookup table is generated, based on the color data, and is combined with the standard color conversion lookup table to generate a composite color conversion lookup table for use with the imaging object.