Abstract:
An apparatus induces and autonomously maintains a state of hypometabolism for long time periods in people who would otherwise suffer from a significant deterioration of their vital functions and a shorter life expectancy, or people who will have to stay in a space environment for a long time. The apparatus, made up of a double enclosure, includes a chamber for housing one person, which is equipped with means for controlling the person's vital functions and the environmental conditions, with the possibility of autonomously modifying the environmental parameters and dosing the administration of substances according to data obtained from measured physiological variables. Outside the chamber there is an interspace containing a liquid for shielding any radiation. A non-invasive monitoring of the main vital functions includes oxygen consumption, carbon dioxide production, heart rate, hemoglobin saturation, temperature of various body districts, muscular tone, electroencephalographic activity, respiratory rate and exchanged respiratory volumes.
Abstract:
A system for monitoring performance of a resuscitation activity on a patient by an acute care provider is provided. The system includes: a first wearable sensor configured to sense movement of a first portion of an acute care provider's hand; a second wearable sensor configured to sense movement of a second portion of the acute care provider's hand; and a controller. The controller is configured to: receive and process signals representative of performance of a resuscitation activity from the first sensor and the second sensor; identify from the processed signals information indicative of at least one of a relative distance, a relative orientation, a change in relative distance and a change in relative orientation between the first sensor and the second sensor during performance of the resuscitation activity; and determine at least one resuscitation activity parameter based, at least in part, on the identified information.
Abstract:
The present invention is directed to a system and method of use for an operational halotherapy enclosure system sufficiently sized to retain therein an exercise machine for a person to do physical exercise and includes a red light panel and a thermal heating light panel. The halotherapy enclosure system also includes a salt aerosol dispersing device configured to disperse salt particles inside of the enclosed space, and a controller configured to control the emission of red light waves from the red light panel, thermal energy from the thermal heating light panel, and air salination emissions from the aerosol dispersing device within the enclosed space. The combination of aerosolized salt, red light waves, and thermal energy produces an enhanced beneficial result when a person inside of the halotherapy enclosure is exercising and inhaling the aerosolized salt under the red light and thermal energy conditions.
Abstract:
A travel pillow includes a main body, at least one module, and a rotary frame. The main body includes at least one compartment. The at least one module is detachably disposed in the at least one compartment; and the rotary frame is disposed on the outer side of the main body. The rotary frame includes a support arm, a rear support part, and an angle adjustment assembly. The support arm is rotatably connected to the rear support part, and the angle adjustment assembly is disposed between the support arm and the rear support part to adjust an angle between the support arm and the rear support part; and the angle adjustment assembly includes a rotating shaft and a damper rotatably sleeving the rotating shaft. The support arm includes a first socket ring. The rear support part includes a second socket ring.
Abstract:
A method for treating, preventing, or ameliorating cardiovascular disease in a subject involves exposing the subject for an effective duration to a condition of hypobaric normoxia or hypobaric hyperoxia. An apparatus or system useful for treating, preventing, or ameliorating cardiovascular disease includes an airtight chamber configured to accommodate and enclose a subject, and including at least one hatch to allow entry or exit of the subject; a vacuum source for adjusting pressure within the chamber to a level sufficient to maintain hypobaria; and a gas source for introducing one or more gases into the chamber, such as oxygen in an amount sufficient to produce a condition of normoxia or hyperoxia within the chamber, while maintaining hypobaria.
Abstract:
An oral device includes an intraoral bolus simulator having an exterior surface and an interior volume fillable with a fluid. An extraoral user interface extends from the bolus simulator, and can be used to locate or position the intraoral bolus simulator. In various embodiments, the fluid may be a gas or a liquid, or combinations thereof. In other embodiments, an oral device includes an extraoral handle, a shield connected to the handle, a tether extending from the shield, and a bolus simulator connected to the tether.
Abstract:
A flow sensor system for ventilation treatment comprises a flow conduit configured to allow gas flow between a first region and a second region, the flow conduit defining a lumen for the gas flow; a flow restrictor disposed within the lumen of the flow conduit between the first region and the second region; a first absolute pressure sensor disposed adjacent to the first region of the flow conduit and configured to measure a pressure of the gas flow at the first region of the flow conduit; and a second absolute pressure sensor disposed adjacent to the second region of the flow conduit and configured to measure pressure of the gas flow at the second region of the flow conduit.
Abstract:
Apparatus for automatic delivery of chest compressions and ventilation to a patient, the apparatus including: a chest compressing device configured to deliver compression phases during which pressure is applied to compress the chest and decompression phases during which approximately zero pressure is applied to the chest a ventilator configured to deliver positive, negative, or approximately zero pressure to the airway; control circuitry and processor, wherein the circuitry and processor are configured to cause the chest compressing device to repeatedly deliver a set containing a plurality of systolic flow cycles, each systolic flow cycle comprising a systolic decompression phase and a systolic compression phase, and at least one diastolic flow cycle interspersed between sets of systolic flow cycles, each diastolic flow cycle comprising a diastolic decompression phase and a diastolic compression phase, wherein the diastolic decompression phase is substantially longer than the systolic decompression phase.
Abstract:
A system for patient rehabilitation is disclosed. The system includes a first movable frame including an articulating bed, wherein the bed is configured to be selectively articulated to an inclined position, a suspension system, wherein the suspension system is disposed within the articulating bed and is selectively adjustable to accommodate varying patient height, a harness, wherein the harness is selectively engageable with the suspension system, wherein the harness is selectively adjustable to accommodate varying patient sizes, a second movable frame including a walker, wherein the walker includes a pair of legs and a motor, wherein approximation of the two movable frames permits the patient to easily utilize the walker from the bed. A method of using the system for patient rehabilitation is also disclosed.
Abstract:
In one embodiment, a method of rehabilitating a patient's cardiac/pulmonary activity and achieving increased fluid distribution, includes placing one inflatable/deflatable chest cuff over the patient's chest area and another inflatable/deflatable cuff over the patient's abdominal area, the chest cuff, when inflated, being arranged to depress the chest and force air out of the patient's lungs, the abdominal cuff being arranged, when inflated to apply pressure to the underlying vessels to direct blood into the patient's chest area; inflating and deflating the chest cuff and the abdominal cuff; connecting an intravenous (IV) line to one of the patient's blood vessels.In another embodiment, a patient interface kit for a system for providing cardiopulmonary resuscitation or circulatory support to a patient.