Abstract:
A synchronous reaction cell, rotating as a unit, disassociates hydrogen from water, traps and filters hydrogen, mixes and pressurizes hydrogen and ingested carbon, hydrogenates carbon by surface catalysis, isolates and exhausts liquid hydrocarbon products above a desired density, recirculates gaseous products for further reaction, and expands steam through a turbine to produce rotation and turn an electrical generator. Solar energy focused by heliostats is one means of supplying process heat. Burning natural gas or another fossil fuel in oxygen freed by the disassociation of water provides alternative sources of heat. The reaction cell has a vertical axis-of-rotation making it conducive to mounting on a tower disposed at the center of an array of heliostats. The rotating reaction cell has a large, cylindrical heat-absorbing surface. Electrical output might be used to aim heliostats. Excess electrical generation might be added to the local electrical grid and sold for its value.
Abstract:
A reformer is disclosed for supplying a reformed gas containing hydrogen to a fuel cell. The reformer comprises a heat source; a preheating portion preheated by heat from the heat source; a pipe shaped reforming reaction unit; a carbon monoxide processing unit extending from the reforming reaction unit; and a rugged portion installed on an internal surface of the pipe shaped reforming reaction unit which is heated by the heat source. By using the rugged portion and the extended pipe design, the area heated by the heat source is increased and more heat is recovered, thereby improving thermal efficiency.
Abstract:
The invention relates to a reactor for carrying out photocatalysed reactions in liquid or gaseous reaction media, consisting of a reactor vessel with a solid photocatalyst (PC), feed lines and take-off lines, mixing means, and a means of supplying electromagnetic radiation, containing microradiators which absorb the electromagnetic radiation and, with a time delay, emit light which excites the photocatalyst, and also to a process for carrying out photocatalytic reactions, in which solid PC are suspended in the liquid or gaseous reaction medium and are activated by means of microradiators which are charged up at an electromagnetic radiation source and which emit this energy with a time delay.
Abstract:
A reactor for the plasma-assisted processing of a gaseous medium, including a pair of electrodes having facing surfaces the separation of which is substantially uniform, with a body of dielectric material positioned between them and defining a plurality of gas passages extending through the space between the electrodes.
Abstract:
A fuel processor for rapid start and operational control. The fuel processor includes a reformer, a shift reactor, and a preferential oxidation reactor for deriving hydrogen for use in creating electricity in a plurality of H2—O2 fuel cells. A heating and cooling mechanism is coupled to at least the shift reactor for controlling the critical temperature operation of the shift reactor without the need for a separate cooling loop. This heating and cooling mechanism produces or removes thermal energy as a product of the temperature of the combustion of air and fuel. Anode effluent and cathode effluent or air are used to control the temperature output of the heating mechanism. A vaporizer is provided that heats the PrOx reactor to operating temperature.
Abstract:
A fuel processor for rapid start and operational control. The fuel processor includes a reformer, a shift reactor, and a preferential oxidation reactor for deriving hydrogen for use in creating electricity in a plurality of H2—O2 fuel cells. A heating and cooling mechanism is coupled to at least the shift reactor for controlling the critical temperature operation of the shift reactor without the need for a separate cooling loop. This heating and cooling mechanism produces or removes thermal energy as a product of the temperature of the combustion of air and fuel. Anode effluent and cathode effluent or air are used to control the temperature output of the heating mechanism. A vaporizer is provided that heats the PrOx reactor to operating temperature.
Abstract:
The invention relates to a device for reforming educts containing hydrocarbons, having a radiation burner and a reforming reactor, which contains, at least in part, metal honeycomb bodies having a catalyst coating, and which can in particular be used to produce hydrogen from fossil energy carriers. The invention should thereby be able to convert educts containing hydrocarbons into synthesis gases with high efficiency, in particular in a low-power range. For this purpose, a radiation burner is used that heats a two-part reforming reactor by radiation and convection. The radiation burner and the two parts of the reforming reactor are thereby arranged and constructed in such a way that the radiation burner surrounds the two parts of the reforming reactor, and the educt gas and smoke gas can be conducted in counter-current between the two parts of the reforming reactor.
Abstract:
A method and apparatus for removing gas species which can be deposited thermally from a semiconductor process exhaust gas is provided. To treat the exhaust gas, an exhaust gas reactor comprising an artificial substrate which is heated is used. The artificial substrate is a structure upon which high temperature chemical vapor deposition (HTCVD) reaction product is deposited. In particular, the HTCVD reaction product is deposited by contacting the exhaust gas with the heated artificial substrate.
Abstract:
A fluid treatment module, particularly for treating ultra-pure fluids by separation or catalytic treatment having at least one treatment membrane in a porous sintered material comprises a rigid tube casing, a rigid compression plate at one or each end thereof having a coating compatible with the fluid(s) to be treated and at least one compensating plate able to slide on the coating, the dimensions and thickness of the compensating plate being set to ensure the module remains sealed over a complete temperature range at which the module is designed to operate.
Abstract:
The invention provides a flow module comprising sandwiched plate elements, with at least one of each pair of adjacent plate element surfaces having a profiling which has a linear parallel construction so that a plurality of linear parallel flow ducts is formed between adjacent plate elements. These flow ducts can be charged with a first and a second fluid in an alternating manner by way of feeding and removal ducts formed by mutually aligned openings in the plate elements. To seal off the flow spaces and the feeding and removal ducts, seals are provided, and the openings for the feeding and removal ducts extend essentially across the whole end area of the profiling so that a distinct feeding and removal space is formed. According to the invention, for a mechanical stabilization several webs are arranged in the openings for the feeding and removal ducts in the profiled plate elements. These webs which are arranged in the inlet area or outlet area of the profiling end below the plate element surface.