Abstract:
A continuous process to upgrade heavy crude oil for producing more valuable crude feedstock having high API gravity, low asphaltene content, and high middle distillate yield, low sulfur content, low nitrogen content, and low metal co teat without external supply of hydrogen and/or catalyst. Heavy crude oil having substantial amount of asphaltene and heavy components is mixed with highly waxy crude oil having large amount of paraffinic components and water to decompose asphaltene compounds and remove sulfur, nitrogen, and metal containing substances under supercritical conditions. Product has higher API gravity, lower asphaltene content, high middle distillate yield, lower sulfur content, lower nitrogen content, and lower metal content to be suitable for conventional petroleum refining process.
Abstract:
Apparatus and methods are provided for converting methane in a feed stream to acetylene. A hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process.
Abstract:
Apparatus and methods are provided for converting methane in a feed stream to acetylene. A hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process.
Abstract:
Apparatus and methods are provided for converting methane in a feed stream to acetylene. A supersonic reactor is used for receiving the methane feed stream and heating the methane feed stream to a pyrolysis temperature. A high temperature carrier stream passes through the reactor chamber at supersonic speeds. According to various aspects, a static mixer is provided for mixing the methane feed stream and the carrier stream.
Abstract:
Apparatus and methods are provided for converting methane in a feed stream to acetylene. A supersonic reactor is used for receiving the methane feed stream and heating the methane feed stream to a pyrolysis temperature. A high temperature carrier stream passes through the reactor chamber at supersonic speeds. According to various aspects, a static mixer is provided for mixing the methane feed stream and the carrier stream.
Abstract:
Methods and systems are provided for converting methane in a feed stream to acetylene. The method includes processing the acetylene to form a stream having acrylic acid. The hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream is be treated to convert acetylene to acrylic acid. The method according to certain aspects includes controlling the level of carbon monoxide to prevent undesired reactions in downstream processing units.
Abstract:
Apparatus and methods are provided for converting methane in a feed stream to acetylene. A hydrocarbon stream is introduced into a supersonic reactor and pyrolyzed to convert at least a portion of the methane to acetylene. The reactor effluent stream may be treated to convert acetylene to another hydrocarbon process.
Abstract:
The invention concerns a process for the continuous treatment of an emulsion and/or a micro-emulsion assisted by an “expanded liquid” for the production of micro- and/or nano-particles or micro- and/or nano-spheres containing one or more active ingredients. In particular, a liquid solvent expanded by compressed or supercritical CO2 is contacted with an O/W emulsion, or alternatively a W/O emulsion or multiple emulsions, formed by an external phase that is itself a liquid expanded by compressed CO2. The expanded liquid forms a solution with the dispersed phase of the emulsion and extracts it inducing the formation of the desired particles of the dissolved compounds.The process is carried out in a counter-current packed column wherein the expanded emulsion is fed from the top, while the expanded liquid is fed from the bottom. Thanks to the presence of the expanded liquid, any deposition of the solid particles produced on the packing elements is avoided, thus preventing any column blockage. A suspension of micro-structured particles of the desired product can be collected continuously at the bottom of the column.
Abstract:
The objective is to provide a high-pressure treatment apparatus with which the pressure or temperature in a treatment chamber can be efficiently adjusted in a short period of time without an overall significant increase in the size or complication of the apparatus. The high-pressure treatment apparatus has a pressure-resistant container having pressure-resistant walls surrounding a treatment chamber, a lid member that closes an open end of the pressure-resistant container, a supply means that supplies a process fluid into the treatment chamber, a partition wall that is thinner than the pressure-resistant wall and is provided along the inside surface of said pressure-resistant container to form a partitioned chamber with said inside surface, and a heat transfer control means. Said heat transfer control means controls heat transfer between said treatment chamber and said partitioned chamber by heating or cooling a heating medium outside the container and feeding said heating medium into said partitioned chamber.
Abstract:
A countercurrent tank type supercritical water reactor with a sacrificial lining, comprising a cylinder body and a catalyst tank arranged inside, the upper part of the cylinder body is connected with a top cover, and the lower part of the cylinder body is connected with a spherical head, the inner side of the cylinder body, the inner side of the spherical head and the inner side of the top cover constitute the inner wall of the reactor, wherein the inner wall of the reactor is provided with a high temperature resistance and thermal insulation coating layer, the inner wall of the high temperature resistance and thermal insulation coating layer is provided with a sealing coating layer, and the inner wall of the sealing coating layer is provided with the sacrificial lining. The reactor is of a countercurrent tank type, which can prevent the reactor blockage caused by salt deposition.