Abstract:
The present invention relates to a process for the preparation of polyether polyols by the reaction of alkylene oxides and compounds containing active hydrogens, in the presence of specific Lewis acid metal compounds as catalysts, novel bis(perfluoroalkylsulfonic acid) compounds of Group 13 of the Periodic Table of the Elements, and to a process for the preparation thereof and the use thereof as catalysts for ring-opening polymerization of cyclic ethers.
Abstract:
A process for improving the catalytic activity of a partially deactivated solubilized rhodium - tertiary organophosphine complex hydroformylation catalyst.
Abstract:
A novel catalyst and the process of using it for hydroformylation where the catalyst is a complex of the formula Pt(Acetylacetonate).sub.2 /nMX.sub.2.nH.sub.2 O/xPR.sub.3 where M is a Group IVA metal, X is a halogem atom, n is an integer of from about 2 to about 10, x is an integer of from about 5 to about 20, n is 0 or 2, and PR.sub.3 is a phosphine where R is an alkyl or, aryl group.
Abstract:
The invention describes a novel nickel-based composition. The invention also concerns the use of said composition as a catalytic composition in an olefin oligomerization process.
Abstract:
A method for producing A hydrogen gas from formic acid, characterized in that at least one heterogeneous catalyst is used to transform the formic acid into hydrogen gas. The at least one heterogeneous catalyst contains heterogenized ruthenium. According to a first aspect of the invention, the at least one heterogeneous catalyst contains at least one hydrophilic phosphine ligand which is m-TPPTS (meta-trisulfonated triphenylphosphine). The at least one heterogeneous catalyst is preferably obtained by mixing an aqueous solution of RuCl3 with hydrophilic phosphine, firstly activated by carrying out a homogeneous reaction with formic acid and by adding at least one solid structure.
Abstract:
In some embodiments, the present disclosure pertains to a compound, comprising a transition metal complex having the formula Φ-[M (x,y)-L1 (w,v)-L2 (t,u)-L3]p+An−mZ−p-m. In an embodiment of the present disclosure Φ may be Λ. In another embodiment Φ may be Λ. In some embodiments of the present disclosure, M is a transition metal. In a related embodiment, p is an integer corresponding to the oxidation state of M. In some embodiments of the present disclosure, each of x, y, w, v, t, and u independently comprise R. In other embodiments, each of x, y, w, v, t, and u independently comprise S. In an embodiment of the present disclosure, each of L1, L2, and L3 independently is a ligand comprising a substituted diamine. In some embodiments, An− comprises a lipophilic anion, where m is from 1 to 3, and where Z− comprises an optional second anion.
Abstract:
A method for producing A hydrogen gas from formic acid, characterized in that at least one heterogeneous catalyst is used to transform the formic acid into hydrogen gas. The at least one heterogeneous catalyst contains heterogenised ruthenium. According to a first aspect of the invention, the at least one heterogeneous catalyst contains at least one hydrophilic phosphine ligand which is m-TPPTS (meta-trisulfonated triphenylphosphine). The at least one heterogeneous catalyst is preferably obtained by mixing an aqueous solution of RuCl3 with hydrophilic phosphine, firstly activated by carrying out a homogeneous reaction with formic acid and by adding at least one solid structure.
Abstract:
Provided are catalyst systems, processes for polymerizing one or more olefins, polymers resulting therefrom, and articles prepared from such polymers. The processes comprise contacting under polymerization conditions one or more olefin monomers, preferably propylene, with a catalyst system comprising a transition metal compound and an activator of the formula (1) or (2) as described herein. The polymer compositions described herein exhibit advantageously narrow composition distributions and high melting points in comparison to conventional polymers having the same comonomer content. The polymers described herein exhibit improved properties, e.g., pellet stability, impact properties, heat seal properties, and structural integrity in film and fabricated parts applications.
Abstract:
Provided are catalyst systems, processes for polymerizing one or more olefins, polymers resulting therefrom, and articles prepared from such polymers. The processes comprise contacting under polymerization conditions one or more olefin monomers, preferably propylene, with a catalyst system comprising a transition metal compound and an activator of the formula (1) or (2) as described herein. The polymer compositions described herein exhibit advantageously narrow composition distributions and high melting points in comparison to conventional polymers having the same comonomer content. The polymers described herein exhibit improved properties, e.g., pellet stability, impact properties, heat seal properties, and structural integrity in film and fabricated parts applications.
Abstract:
A composition that comprises a support material having incorporated therein a metal component and impregnated with both hydrocarbon oil and a polar additive. The composition that is impregnated with both hydrocarbon oil and polar additive is useful in the hydrotreating of hydrocarbon feedstocks, and it is especially useful in applications involving delayed feed introduction whereby the composition is first treated with hot hydrogen, and, optionally, with a sulfur compound, prior to contacting it with a hydrocarbon feedstock under hydrodesulfurization process conditions.