Abstract:
The invention involves electrospray ionization of dissolved substances at atmospheric pressure in the ion source of a mass spectrometer. A chip with a multitude of spray nozzles is proposed, where each individual spray nozzle is surrounded by several sheath gas nozzles, preferably in a symmetric arrangement, for the jet-like introduction of a sheath gas. A shared attracting-voltage electrode is positioned substantially opposite the spray nozzles. The attracting-voltage electrode may have a tapering (e.g. funnel-shaped) opening above each spray nozzle so that the sheath gas jets are forced to closely envelop the spray jet, which is comprised of ions and very fine droplets. Heavier ions and droplets are thus prevented from discharging on the surfaces of the openings of the attracting-voltage electrode. Special measures can be taken to make all spray nozzles spray uniformly and to supply them with substance peaks from chromatographic or electrophoretic separators as simultaneously as possible.
Abstract:
An electrospray apparatus for dispensing a controlled volume of liquid in pulses at a constant frequency is provided. The apparatus comprises an emitter (70) having a spray area from which liquid can be sprayed, a means for applying an electric field (78) to liquid in, on or adjacent to the emitter (70). In use, liquid is drawn to the spray area by electrostatic forces and electrospray occurs in pulses at a constant frequency whilst the electric field (78) is applied.
Abstract:
An electrospray emitter assembly (4) for an interface device (1) used to connect the output of a liquid chromatograph to the inlet of an electrospray ion source of a mass spectrometer (10). The device (1) incorporates an electrospray emitter assembly (4) that includes an emitter needle (40), a sheath (6) and a housing (5) with an attachment means in the form of a flange (55) for attachment to a mass spectrometer (10). The sheath (6) is arranged to shield the electrospray emitter needle (40) when the assembly is not attached to a mass spectrometer (10). The assembly (4) is operable to move the sheath (6) thereby to reveal, in use, the electrospray emitter needle (40) when the assembly (4) is attached to the mass spectrometer (10).
Abstract:
An electrostatic spraying device comprises a capillary spray electrode having a spraying end, a reference electrode, and a reservoir in fluid communication with the spray electrode. In use, the electrodes are connected across a generator in order to establish an electronic field between the electrodes and cause fluid in the reservoir to be sprayed from the spray electrode. The spray electrode has a focus that defines a point at which the electronic field is focussed on the spraying end.
Abstract:
A reduced water mist generator, including: a water supply member that supplies water; a high voltage application member that applies a high voltage; and a discharge electrode that is constituted by a metal element that produces molecular hydrogen by a chemical reaction with nitric acid molecules, the discharge electrode being provided with an electrostatic atomizing function that, when a high voltage is applied by the high voltage application member while water is supplied by the water supply member, generates an electric field and thereby electrostatically atomizes the water supplied from the water supply member to produce microparticulated water, and also being provided with a hydrogen molecule generating function that produces the molecular hydrogen by a chemical reaction with nitric acid molecules generated when the water is electrostatically atomized, the discharge electrode generating a hydrogen water mist in the form of a reduced water that contains the molecular hydrogen in the microparticulated water.
Abstract:
An electrostatic atomizing device comprises an electrostatic atomizing part (2) applying high-voltage to water supplied to an atomization electrode (1), thereby generating negatively-charged minute water particles, a positive ion generator (3) being configured to generate positive ions, and a controller (16) being configured to control operation of said electrostatic atomizing part (2) and said positive ion generator (3). Said controller (16) controls so as to cause said electrostatic atomizing part (2) to generate the negatively-charged minute water particles, after the positive ions are generated by said positive ion generator (3).
Abstract:
The electrostatic atomizing device includes a discharge electrode, an opposed electrode, and a voltage application device. The voltage application device is configured to apply a voltage between the discharge electrode and the opposed electrode so as to atomizing a liquid supplied to the discharge electrode. The electrostatic atomizing device further includes a reduced water provision device configured to supply reduced water as the above liquid to the discharge electrode.
Abstract:
Provided is a multi-channel electrospray emitter. The emitter includes a plurality of separate or distinct capillaries, each capillary being one channel and terminating in a nozzle, from which the analyte is sprayed. The nozzles may be raised above a face of the electrospray emitter. The multi-channel electrospray emitter may comprise a microstructured fiber. In one embodiment, the microstructured fiber may be a photonic crystal fiber.
Abstract:
A large variety of electroprocessed capsules can be produced to encapsulate a variety of additives within the subcompartments or substructures of the manufactured capsule. Furthermore, the manufactured capsules can be arranged within a filter of a smoking article during the manufacturing process. By modifying the various parameters that control the electrospraying or electrospinning processes, capsules can be manufactured that vary in composition, in substructural organization, and in dimension. A capsule produced by electrospraying comprises at least one polymeric material that encapsulates or supports the retention of at least one flavorant and/or non-flavorant within the capsule. A polymeric material provides a supporting structure for encapsulating at least one flavorant and/or non-flavorant additive. The capsules that can be produced by various electrospraying processes described below include microcapsules in a micro-scaled range, nanocapsules in a nano-scaled range, and various mixtures of microcapsules and nanocapsules.
Abstract:
Multiplexed electrospray deposition apparatus capable of delivering picoliter volumes of one or more substances is disclosed. The apparatus may include a unitary planar dispenser etched from a silicon wafer through microfabrication or micromachining technology. The apparatus may be used as a deposition tool for making protein microarrays in a noncontact mode. Upon application of potential difference in the range of 7-9 kV, the substances may be dispensed directly, not through a collimating mask, onto a substrate with microhydrogel features functionalized with an anchoring agent.