Abstract:
A method of forming a thermal bend actuator (6) is provided with upper arms (23, 25, 26) and lower arms (27, 28) which are non planar, so increasing the stiffness of the arms. The arms (23, 25, 26, 27, 28) may be spaced transversely of each other and do not overly each other in plan view, so enabling all arms to be formed by depositing a single layer of arm forming material.
Abstract:
A thermal bend actuator (6) is provided with upper arms (23, 25, 26) and lower arms (27, 28) which are non planar, so increasing the stiffness of the arms. The arms (23, 25, 26,27,28) may be spaced transversely of each other and do not overly each other in plan view, so enabling all arms to be formed by depositing a single layer of arm forming material.
Abstract:
A micrometer sized, single-stage, vertical thermal actuator with controlled bending capable of repeatable and rapid movement of a micrometer-sized optical device off the surface of a substrate. The vertical thermal actuator is constructed on a surface of a substrate. At least one hot arm has a first end anchored to the surface and a free end located above the surface. A cold arm has a first end anchored to the surface and a free end. The cold arm is located above the hot arm relative to the surface. The cold arm is adapted to provide controlled bending near the first end thereof. A member mechanically and electrically couples the free ends of the hot and cold arms such that the actuator bends generally at the flexure so that the member moves away from the substrate when current is applied to at least the hot arm.
Abstract:
A thermal actuator includes a first arm having a proximal end and a distal end, a second arm, parallel to the first arm, having a proximal end and a distal end, and a third arm arranged between and parallel to the first and second arms, the third arm having a proximal end and a distal end. The third arm has at least one portion at the distal end of the third arm having a width that is substantially larger than a width of the first arm and a width of the second arm. The distal ends of the first, second and third arms are coupled together to form a distal end of the thermal actuator, and the first, second and third arms preferably are made of a single material. When the proximal end of the third arm is coupled to ground and current is applied to the proximal end of the first arm, the distal end of the thermal actuator moves and applies force in a first direction, and when the proximal end of the third arm is coupled to ground and current is applied to the proximal end of the second arm, the distal end of the thermal actuator moves and applies force in a direction opposite to the first direction. A number of thermal actuators can be arranged in an array. The thermal actuator or array of thermal actuators can be coupled to an applicator.
Abstract:
A MEMS actuator is provided that produces significant forces and displacements while consuming a reasonable amount of power. The MEMS actuator includes a microelectronic substrate, spaced apart supports on the substrate and a metallic arched beam extending between the spaced apart supports. The MEMS actuator also includes a heater for heating the arched beam to cause further arching of the beam. In order to effectively transfer heat from the heater to the metallic arched beam, the metallic arched beam extends over and is spaced, albeit slightly, from the heater. As such, the MEMS actuator effectively converts the heat generated by the heater into mechanical motion of the metallic arched beam. A family of other MEMS devices, such as relays, switching arrays and valves, are also provided that include one or more MEMS actuators in order to take advantage of its efficient operating characteristics. In addition, a method of fabricating a MEMS actuator is further provided.
Abstract:
A MEMS actuator is provided that produces significant forces and displacements while consuming a reasonable amount of power. The MEMS actuator includes a microelectronic substrate, spaced apart supports on the substrate and a metallic arched beam extending between the spaced apart supports. The MEMS actuator also includes a heater for heating the arched beam to cause further arching of the beam. In order to effectively transfer heat from the heater to the metallic arched beam, the metallic arched beam extends over and is spaced, albeit slightly, from the heater. As such, the MEMS actuator effectively converts the heat generated by the heater into mechanical motion of the metallic arched beam. A family of other MEMS devices, such as relays, switching arrays and valves, are also provided that include one or more MEMS actuators in order to take advantage of its efficient operating characteristics. In addition, a method of fabricating a MEMS actuator is further provided.
Abstract:
A system and methods for base excitation of moderately high vibration of micro-cantilevers are disclosed. A micro-cantilever may be coupled to one or more actuators adjacent its base. The actuators may comprise bulk materials, bridges, or formed wires that expand and contract by application of electric currents, due to, for example, the effect of electro-thermal heating or piezoelectric effects. Single actuators or an array of actuators may be placed around the micro-cantilever to oscillate it and apply actuation pulses. The system and methods, and adjustments of the geometrical parameters, may be performed to yield a nominal natural frequency in the system. The excitation of actuators with signals corresponding to the natural frequency may induce resonance in the system and may result in high amplitude vibrations and displacement of the cantilever tip of the micro-cantilever. Various architectures of the actuators may be implemented to stimulate different frequencies of the beam and induce displacement in different direction and amplitudes.
Abstract:
A microelectromechanical structure with electrothermal actuation including a fixed part, a moveable part, a first electrothermal actuating beam enabling an electric current to flow from the fixed part to the moveable part and a second electrothermal actuating beam enabling an electric current to flow from the fixed part to the moveable part, the beams being mechanically connected to the moveable part enabling a displacement of the moveable part by electrothermal actuation, an electrically conductive connecting element connecting the moveable part to the fixed part, a first connector for connecting the first actuating beam to a first polarisation source and a second connector for connecting the second actuating beam to a second polarisation source, such that the first and the second can be polarised differently and separately.
Abstract:
A device for generating a second temperature variation ΔT2 from a first use temperature variation ΔT1, includes an elastocaloric material layer, having an internal temperature which is able to vary by ΔT2 in response to a given mechanical stress variation Δσ applied to the elastocaloric material layer. The variation Δσ being induced by the first use temperature variation ΔT1 There is a suspended element in mechanical contact with the elastocaloric material layer so as to apply to this layer a mechanical stress that varies in response to the use temperature variation ΔT1. The suspended element is arranged so as to make the mechanical stress applied to the elastocaloric material layer vary by Δσ in response to the temperature variation ΔT1 to generate the second temperature variation ΔT2.
Abstract:
The present invention relates to a design and microfabrication method for microgrippers that are capable of grasping micro and nano objects of a large range of sixes and two-axis force sensing capabilities. Gripping motion is produced by one or more electrothermal actuators. Integrated force sensors along x and y directions enable the measurement of gripping forces as well as the forces applied at the end of microgripper arms along the normal direction, both with a resolution down to nanoNewton. The microfabrication method enables monolithic integration of the actuators and the force sensors.