Abstract:
The invention provides ceramic molded solid articles and methods for making these articles on the micron scale. Articles are molded from ceramic precursors, optionally using molds including at least one portion that is elastomeric.
Abstract:
Chemically or biochemically active agents or other species are patterned on a substrate surface by providing a micromold having a contoured surface and forming, on a substrate surface, a chemically or biochemically active agent or fluid precursor of a structure. A chemically or biochemically active agent or fluid precursor also can be transferred from indentations in an applicator to a substrate surface. The substrate surface can be planar or non-planar. Fluid precursors of polymeric structures, inorganic ceramics and salts, and the like can be used to form patterned polymeric articles, inorganic salts and ceramics, reactive ion etch masks, etc. at the surface. The articles can be formed in a pattern including a portion having a lateral dimension of less than about 1 millimeter or smaller. The indentation pattern of the applicator can be used to transfer separate, distinct chemically or biochemically active agents or fluid precursors to separate, isolated regions of a substrate surface. Waveguide arrays, combinatorial chemical or biochemical libraries, etc. can be made. Differences in refractive index of waveguide and cladding can be created by subjecting the waveguide and cladding, made of identical prepolymeric material, to different polymerization or cross-linking conditions. Interferometers are defined by coupling arrays of waveguides, where coupling can be controlled by altering the difference in refractive index between cladding and waveguide at any desired location of the array. Alteration and refractive index can be created photochemically, chemically, or the like. Sensors also are disclosed, including biochemical sensors.
Abstract:
To offer a microstructure fabrication apparatus capable of realizing MEMS and a Rugate Filter excellent in performance characteristics by patterning a thick functional material film in high aspect ratio with a simple and practical manufacturing method. A Si layer is employed for a mask pattern. The advantages of the Si layer are withstood a process conducted at high temperature for forming a PZT layer, which is the functional material layer, patterned in high aspect ratio, and achieves excellent process consistency for the whole manufacturing processes of the microfabrication. A trench or a gap is formed with the mask pattern deeper than the desired PZT layer. The PZT layer, or functional material layer (films) is formed on the whole surface including the bottom of the concave part of the mask pattern. The PZT layer deposited on the mask pattern is removed with the mask pattern itself, and selectively remains the pattern of the PZT layer, thereby obtaining a pattern of the desired functional material layer.
Abstract:
The microfluidic structure comprises first and second substantially planar form-stable base layers and an intermediate spacing layer of elastic material, said spacing layer being recessed to define a microcavity or channel system with at least one of said first and second base layers. The structure is produced by moulding the spacing layer, optionally applied to or integral with a first base layer, against a planar mould, and the microcavity or channel system is completed by applying a second base layer, and optionally said first base layer, to the spacing layer.
Abstract:
A method for large scale integration of haptic devices is described. The method comprises forming a first elastomer layer of a large scale integration (LSI) device on a substrate according to a specified manufacturing process, the first elastomer layer having a plurality of fluid based circuits, the first elastomer layer adhering to a plurality of formation specifications. The method further comprises curing the first elastomer layer. Additionally, one or more additional elastomer layers of the LSI device are formed with the first elastomer layer according to the specified manufacturing process, the one or more additional elastomer layers having a plurality of fluid based circuits, the one or more additional elastomer layers adhering to the plurality of formation specifications.
Abstract:
A flexible patch pump for controllable accurate subcutaneous delivery of one or more medicaments to a patient includes a laminated layered structure. The pump may have a rigid reservoir layer including a number of rigid reservoirs disposed in a flexible material; a flexible microfluidic layer including a compliant membrane for sealing the rigid reservoirs, a network of microfluidic channels connecting the rigid reservoirs, and a number of inlet and/or outlet valves corresponding to the rigid reservoirs; and a flexible-rigid electronic circuit layer including a number of individually-addressable actuators. In operation, the rigid reservoirs may contain medicament that is dispensed in precise volumes at appropriate times due, for example, to a pressure change in an addressed reservoir caused by displacement of the compliant membrane or other actuation element.
Abstract:
Disclosed is a method for manufacturing a microcantilever having a predetermined thickness that includes forming a liquid synthetic resin for cantilevers to a thickness corresponding to the thickness of the microcantilever on an upper surface of a base block having an adhesive base and a non-adhesive base, and curing the liquid synthetic resin for cantilevers via a boundary between the adhesive base and the non-adhesive base, wherein the adhesive base has stronger adhesivity to the cured synthetic resin for cantilevers than the non-adhesive base.
Abstract:
A photovoltaic device includes an electron accepting material and an electron donating material. One of the electron accepting or donating materials is configured and dimensioned as a first component of a bulk heterojunction with a predetermined array of first structures, each first structure is substantially equivalent in three dimensional shape, has a substantially equivalent cross-sectional dimension, and where each first structure of the array of first structures has a substantially equivalent orientation with respect to adjacent first structures of the predetermined array forming a substantially uniform array.
Abstract:
This invention relates to a method of fabricating a three-dimensional copper nanostructure, including manufacturing a specimen configured to include a SiO2 mask; performing multi-directional slanted plasma etching to form a three-dimensional etching structure layer on the specimen; performing plating so that a multi-directional slanted plasma etched portion of the specimen is filled with a metal; removing an over-plated portion and the SiO2 mask from the metal layer; and removing a portion of a surface of the specimen other than the metal which is the three-dimensional etching structure layer. In this invention, a uniform copper nanostructure array can be obtained by subjecting a large-area specimen disposed in a Faraday cage to multi-directional slanted plasma etching using high-density plasma, forming a copper film on the etched portion of the specimen, and removing an over-plated copper film and the SiO2 mask, and the diameter of the copper nanostructure can be arbitrarily adjusted, thus attaining high applicability.
Abstract:
The invention relates to a method of forming a microfluidic array comprising at least one channel of semi-circular section, comprising the following steps: bringing into contact a first liquid (7) with an array of electrodes (3) of a microfluidic chip (1) comprising at least one pair of substantially parallel and coplanar electrodes (3a, 3b) arranged on a substrate (4), activating said array of electrodes so as to actuate by liquid dielectrophoresis LDEP said first liquid to form a fluidic structure (9) comprising at least one fluidic finger (9a), and using said fluidic structure as a mould to form said microfluidic array by solidification or hardening of a second liquid (11) deposited on the microfluidic chip and hugging the shape of said fluidic structure.