Method of forming articles including waveguides via capillary micromolding and microtransfer molding
    32.
    发明申请
    Method of forming articles including waveguides via capillary micromolding and microtransfer molding 有权
    通过毛细管微成型和微转移成型形成包括波导的制品的方法

    公开(公告)号:US20020066978A1

    公开(公告)日:2002-06-06

    申请号:US10016614

    申请日:2001-10-30

    Abstract: Chemically or biochemically active agents or other species are patterned on a substrate surface by providing a micromold having a contoured surface and forming, on a substrate surface, a chemically or biochemically active agent or fluid precursor of a structure. A chemically or biochemically active agent or fluid precursor also can be transferred from indentations in an applicator to a substrate surface. The substrate surface can be planar or non-planar. Fluid precursors of polymeric structures, inorganic ceramics and salts, and the like can be used to form patterned polymeric articles, inorganic salts and ceramics, reactive ion etch masks, etc. at the surface. The articles can be formed in a pattern including a portion having a lateral dimension of less than about 1 millimeter or smaller. The indentation pattern of the applicator can be used to transfer separate, distinct chemically or biochemically active agents or fluid precursors to separate, isolated regions of a substrate surface. Waveguide arrays, combinatorial chemical or biochemical libraries, etc. can be made. Differences in refractive index of waveguide and cladding can be created by subjecting the waveguide and cladding, made of identical prepolymeric material, to different polymerization or cross-linking conditions. Interferometers are defined by coupling arrays of waveguides, where coupling can be controlled by altering the difference in refractive index between cladding and waveguide at any desired location of the array. Alteration and refractive index can be created photochemically, chemically, or the like. Sensors also are disclosed, including biochemical sensors.

    Abstract translation: 化学或生物化学活性剂或其它物质通过提供具有轮廓表面的微胶体并在基底表面上形成结构的化学或生物化学活性剂或流体前体而在基底表面上图案化。 化学或生物化学活性剂或流体前体也可以从敷料器中的凹陷转移到基底表面。 衬底表面可以是平面的或非平面的。 聚合物结构,无机陶瓷和盐等的流体前体可用于在表面形成图案化聚合物制品,无机盐和陶瓷,反应离子蚀刻掩模等。 制品可以形成为包括横向尺寸小于约1毫米或更小的部分的图案。 涂抹器的压痕图案可以用于将单独的,不同的化学或生物化学活性剂或流体前体转移到基底表面的分离的,分离的区域。 可以制作波导阵列,组合化学或生物化学库等。 可以通过将由相同的预聚物材料制成的波导和包层进行不同的聚合或交联条件来产生波导和包层的折射率差异。 干涉仪通过耦合波导阵列来定义,其中可以通过改变阵列的任何所需位置处的包层和波导之间的折射率差来控制耦合。 改变和折射率可以通过光化学,化学等方式产生。 还公开了传感器,包括生化传感器。

    Method for manufacturing microfabrication apparatus
    33.
    发明授权
    Method for manufacturing microfabrication apparatus 失效
    微细加工装置的制造方法

    公开(公告)号:US06387713B2

    公开(公告)日:2002-05-14

    申请号:US09874165

    申请日:2001-06-04

    Applicant: Masaki Hara

    Inventor: Masaki Hara

    CPC classification number: B81C1/0019 B81C2201/034

    Abstract: To offer a microstructure fabrication apparatus capable of realizing MEMS and a Rugate Filter excellent in performance characteristics by patterning a thick functional material film in high aspect ratio with a simple and practical manufacturing method. A Si layer is employed for a mask pattern. The advantages of the Si layer are withstood a process conducted at high temperature for forming a PZT layer, which is the functional material layer, patterned in high aspect ratio, and achieves excellent process consistency for the whole manufacturing processes of the microfabrication. A trench or a gap is formed with the mask pattern deeper than the desired PZT layer. The PZT layer, or functional material layer (films) is formed on the whole surface including the bottom of the concave part of the mask pattern. The PZT layer deposited on the mask pattern is removed with the mask pattern itself, and selectively remains the pattern of the PZT layer, thereby obtaining a pattern of the desired functional material layer.

    Abstract translation: 为了提供一种能够实现MEMS的微结构制造装置和通过以简单实用的制造方法对具有高纵横比的厚功能材料膜进行图案化的性能特性优异的Rugate滤波器。 Si层用于掩模图案。 Si层的优点是经受在高温下进行的工艺,以形成以高纵横比构图的功能材料层形成PZT层,并且在微细加工的整个制造工艺中获得优异的工艺一致性。 形成沟槽或间隙,掩模图案比期望的PZT层更深。 在包括掩模图案的凹部的底部的整个表面上形成PZT层或功能材料层(膜)。 沉积在掩模图案上的PZT层用掩模图案本身去除,并且选择性地保留PZT层的图案,从而获得所需功能材料层的图案。

    Three-dimensional copper nanostructure and fabrication method thereof
    39.
    发明授权
    Three-dimensional copper nanostructure and fabrication method thereof 有权
    三维铜纳米结构及其制备方法

    公开(公告)号:US09139914B2

    公开(公告)日:2015-09-22

    申请号:US14259628

    申请日:2014-04-23

    Abstract: This invention relates to a method of fabricating a three-dimensional copper nanostructure, including manufacturing a specimen configured to include a SiO2 mask; performing multi-directional slanted plasma etching to form a three-dimensional etching structure layer on the specimen; performing plating so that a multi-directional slanted plasma etched portion of the specimen is filled with a metal; removing an over-plated portion and the SiO2 mask from the metal layer; and removing a portion of a surface of the specimen other than the metal which is the three-dimensional etching structure layer. In this invention, a uniform copper nanostructure array can be obtained by subjecting a large-area specimen disposed in a Faraday cage to multi-directional slanted plasma etching using high-density plasma, forming a copper film on the etched portion of the specimen, and removing an over-plated copper film and the SiO2 mask, and the diameter of the copper nanostructure can be arbitrarily adjusted, thus attaining high applicability.

    Abstract translation: 本发明涉及一种制造三维铜纳米结构的方法,包括制造被配置为包括SiO 2掩模的试样; 执行多方向倾斜等离子体蚀刻以在样本上形成三维蚀刻结构层; 进行电镀,使得样品的多方向倾斜等离子体蚀刻部分被金属填充; 从金属层去除过镀层部分和SiO 2掩模; 除去除了作为三维蚀刻结构层的金属以外的试样的表面的一部分。 在本发明中,通过对设在法拉第笼中的大面积试样进行多层倾斜等离子体蚀刻,使用高密度等离子体,在试样的蚀刻部分上形成铜膜,可以得到均匀的铜纳米结构体, 去除过镀铜膜和SiO 2掩模,并且可以任意调整铜纳米结构的直径,从而获得高适用性。

    FORMATION OF A MICROFLUIDIC ARRAY
    40.
    发明申请
    FORMATION OF A MICROFLUIDIC ARRAY 审中-公开
    形成微流感阵列

    公开(公告)号:US20140183044A1

    公开(公告)日:2014-07-03

    申请号:US14138514

    申请日:2013-12-23

    CPC classification number: C25D1/12 B81C99/009 B81C2201/034

    Abstract: The invention relates to a method of forming a microfluidic array comprising at least one channel of semi-circular section, comprising the following steps: bringing into contact a first liquid (7) with an array of electrodes (3) of a microfluidic chip (1) comprising at least one pair of substantially parallel and coplanar electrodes (3a, 3b) arranged on a substrate (4), activating said array of electrodes so as to actuate by liquid dielectrophoresis LDEP said first liquid to form a fluidic structure (9) comprising at least one fluidic finger (9a), and using said fluidic structure as a mould to form said microfluidic array by solidification or hardening of a second liquid (11) deposited on the microfluidic chip and hugging the shape of said fluidic structure.

    Abstract translation: 本发明涉及一种形成包括至少一个半圆形截面通道的微流体阵列的方法,包括以下步骤:使第一液体(7)与微流体芯片(1)的电极阵列(3)接触 )包括布置在基板(4)上的至少一对基本上平行和共面的电极(3a,3b),激活所述电极阵列以便通过液体介电电泳LDEP所述第一液体致动以形成流体结构(9),所述流体结构(9)包括 至少一个流体指(9a),并且使用所述流体结构作为模具以通过凝固或固化沉积在所述微流体芯片上的第二液体(11)形成所述微流体阵列并且拥抱所述流体结构的形状。

Patent Agency Ranking