Abstract:
A solid-state imager includes a photoelectric conversion region for photoelectrically converting a light beam received on a light receiving surface thereof into a signal charge and a waveguide path for guiding the light beam to the light receiving surface. The waveguide path includes a plurality of waveguide members, each waveguide member guiding a light beam incident on a light incident surface thereof to a light output surface thereof. The plurality of waveguide members are laminated on the light receiving surface. A first waveguide member closest to the light receiving surface from among the plurality of waveguide members faces the light receiving surface and is smaller in area than a light incident surface of a second waveguide member farthest from the light receiving surface from among the plurality of waveguide members.
Abstract:
A system and/or a method reads, measures and/or controls intensity of light emitted from a light-emitting diode (LED). The system and/or the method have a light intensity detector adjacent to the LED for reading and/or measuring the intensity of light emitted from the LED. The system and/or the method have a control circuit that may be electrically connected to both the detector and/or the LED for measuring and/or for controlling an intensity of light emitted from the LED. A housing surrounds the light detector and/or the LED. The housing has a pathway that allows only light emitted from the LED to reach the light detector. The LED has a finish and/or a coating that eliminates and/or retards absorption of light by internal components of the LED. The finish and/or the coating eliminates and/or retards reflection of the light by the LED.
Abstract:
A receptacle assembly for a twist-lock photocontrol that is mounted on a luminaire housing. The assembly includes a receptacle and a spring clamp. The receptacle has a disc portion with a hub extending from the central portion of the back side, a perimeter side wall with a castellated bottom edge that engages stops on the luminaire housing. Three fingers extend from the back side of the disc and terminate at a lip edge. The spring clamp has a substantially flat, ring-shaped body that includes a top surface, an opening, an inner edge, an outer edge, and at least one pair of spring members. The receptacle is attached to a luminaire housing using the spring clamp. The orientation of the receptacle can be adjusted and can be locked into a stationary position without tools.
Abstract:
A high-speed optical sensing device is provided in the present invention. The high-speed optical sensing device has an optical detector, a lens set, and a beam splitter. The optical detector is utilized for detecting luminous intensity. The lens set is utilized for concentrating light beams toward a color analyzer. The beam splitter is aligned to the illuminating device to be detected and is utilized to separate the light beam generated by the illuminating device to the optical detector and the lens set simultaneously.
Abstract:
A method for imaging a sample by means of a device having a cavity with black inner walls and a sample opening, the device further comprising illumination means for illumination of the cavity and a digital imaging device directed from the cavity to the sample opening, the method comprising the following steps: presenting a sample to the cavity via a sample opening; illuminating the cavity; activating the imaging device to record an image of the sample; communicating the recorded image data to a computer programmed with image analysis software to analyze the recorded image, characterized in that the inner wall of the cavity is light absorbing and in that it is at least partly provided with light point sources distributed over at least a part of the inner wall of the cavity and a selection of the light sources, dependent on the desired light conditions, is activated.
Abstract:
An imaging system for use in a vehicle headlamp control system includes an opening, an image sensor, a red lens blocking red complement light between the opening and the image sensor, and a red complement lens blocking red light between the opening and the image sensor. Each lens focuses light onto a different subwindow of the image sensor. The imaging system allows processing and control logic to detect the presence of headlamps on oncoming vehicles and tail lights on vehicles approached from the rear for the purpose of controlling headlamps. A light sampling lens may be used to redirect light rays from an arc spanning above the vehicle to in front of the vehicle into substantially horizontal rays. The light sampling lens is imaged by the image sensor to produce an indication of light intensity at various elevations. The processing and control logic uses the light intensity to determine whether headlamps should be turned on or off. A shutter may be used to protect elements of the imaging system from excessive light exposure.
Abstract:
An infrared radiation detection device is characterized by selecting a material which can be laminated with a thermal process, for example, a plastic-based material such as polyethylene (PE) or polyvinylchloride (PVC), to form the substrate of the infrared radiation device. The infrared radiation detection device combines the phosphors powder and the nonlinear crystal powder as the source for detecting the infrared radiation, thereby the infrared radiation detection device is capable of detecting the infrared radiation at different power level and different visible wavelengths. The active area of the infrared radiation detection device which includes an infrared radiation detection thin film is coated or printed onto the substrate in a margin-to-margin manner, such that the incident infrared radiation glares which is reflected from the surface of the non-active area of the infrared radiation detection device is reduced.
Abstract:
An imaging system for use in a vehicle headlamp control system includes an opening, an image sensor, a red lens blocking red complement light between the opening and the image sensor, and a red complement lens blocking red light between the opening and the image sensor. Each lens focuses light onto a different subwindow of the image sensor. The imaging system allows processing and control logic to detect the presence of headlamps on oncoming vehicles and tail lights on vehicles approached from the rear for the purpose of controlling headlamps. A light sampling lens may be used to redirect light rays from an arc spanning above the vehicle to in front of the vehicle into substantially horizontal rays. The light sampling lens is imaged by the image sensor to produce an indication of light intensity at various elevations. The processing and control logic uses the light intensity to determine whether headlamps should be turned on or off. A shutter may be used to protect elements of the imaging system from excessive light exposure.
Abstract:
A photoelectric converting apparatus has a reflection preventing section. The section is formed on at least a peripheral portion of said light receiving section.
Abstract:
A security light having optional connection to multiple power supplies. The lighting controller can sense the appropriate connected supply and automatically connect to three different power supplies which include house voltage connection through a typical junction box, a remote solar charging station, and on-board batteries that can be used as a third backup power supply. Additional implementations include power outage detection and backup illumination along with low voltage power supply from a mounting structure.