Abstract:
The invention concerns an optical system. The optical system comprises an input for receiving an optical signal, a predetermined output plane, and a diffraction grating for separating the optical signal received at the input into spectral elements thereof. The grating has a diffraction surface, which is formed by a photolithography process. The diffraction surface has a first predetermined profile. The first profile is formed by a plurality of points each conducted by different equations. Consequently, each spectral component is focused on the predetermined output plane.
Abstract:
A manufacturing method for a grating is disclosed for the angular dispersion of light impinging the grating. The grating comprises tapered structures and cavities. A cavity width and/or corrugation amplitude is varied for achieving a desired grating efficiency according to calculation. A method is disclosed for conveniently creating gratings with variable cavity width and/or corrugation amplitude. The method comprises the step of anisotropically etching a groove pattern into a grating master. Optionally a replica is produced that is complementary to the grating master. By variation of an etching resist pattern, the cavity width of the grating may be varied allowing the optimization towards different efficiency goals.
Abstract:
A spectroscope comprises a package provided with a light entrance part, a plurality of lead pins penetrating through a support part opposing the light entrance part in the package, a light detection unit supported on the support part within the package, and a spectroscopic unit supported on the support part within the package so as to be arranged on the support part side of the light detection unit. The light detection unit has a light transmission part for transmitting therethrough light incident thereon from the light entrance part. The spectroscopic unit has a spectroscopic part for spectrally resolving the light transmitted through the light transmission part while reflecting the light to a light detection part. The lead pins are fitted into fitting parts provided with the light detection unit and electrically connected to the light detection part.
Abstract:
An apparatus for carrying out spectral analysis of optical radiation emitted from a light source (11) comprises a spectral detector (1) having an entrance aperture (10) for the radiation from thelight source (11), a first imaging optical component (11), a first imaging optical component (12), a diffraction grating (14) for wavelength dispersion of the radiation, order sorting means (131, 132) for separation of the spectral orders of the diffraction grating (14), a second imaging optical component (15), and a detecting unit (16) for registration of the light source spectrum divided into order spectra through the order sorting means (131, 132). The order sorting means (131, 132) comprise at least two refractive optical components manufactured from different material. The two refractive optical components (131 and 132) together with the diffraction grating (14) and the imaging optical components (12 and 15) produce a substantially uniform distribution of the order spectra on the detector unit (16). Favourably the order sorting means (131, 132), the diffraction grating (14) and the imaging optical components (12, 15) also co-act to produce a substantially stigmatic image of the entrance aperture (10) in at least one point on the detector unit (16).
Abstract:
A spectrograph usable as a demultiplexer/detector in a wavelength division multiplexing optical system. The spectrograph comprises a planar waveguide and a detector array. The planar waveguide has a dispersive edge having an inwardly concave shape, an input edge, and a straight output edge. The dispersive edge has a reflective diffraction grating formed on it, the grating having a variable line spacing. An optical input signal comprising a plurality of different wavelength ranges enters the waveguide at the input edge, and travels through the waveguide and strikes the grating. The grating focuses the optical energy in each of the wavelength ranges at a focal spot at the output edge, the position of each focal spot being a function of wavelength. The detector array comprises a plurality of photodetectors positioned along a straight line, such that the photodetectors are positioned at the focal spots. Each photodetector therefore detects the optical energy in one of the input ranges. A stack of such planar waveguides may be assembled to form a multi-channel spectrograph.
Abstract:
A compact, high sensitive, multi-wavelength spectral analyzer capable of simultaneously obtaining a spectral distribution of extremely weak radiation such as bioluminescence, chemiluminescence, extremely weak fluorescence caused by excitation light, Raman scattered light, etc. with an extremely high luminosity and without wavelength scanning. The spectral analyzer comprises a spectroscope and a high sensitive one- or two-dimensional photodetector. The spectroscope includes an entrance slit, a collimator lens of high luminosity disposed such that a focal point of the collimator lens is coincident with the entrance slit to convert light emerging therefrom into parallel rays, a reflection diffraction grating that diffracts the parallel rays from the collimator lens to produce spectra, and an imaging lens that focuses the parallel rays diffracted by the reflection diffraction grating on an image plane thereof to form a spectral image. The photodetector is disposed on the image plane of the imaging lens.