Abstract:
Prism-coupling systems and methods for characterizing large depth-of-layer waveguides are disclosed. The systems and methods utilize a coupling prism having a coupling angle α having a maximum coupling angle αmax at which total internal reflection occurs. The prism angle α is in the range 0.81αmax≦α≦0.99αmax. This configuration causes the more spaced-apart lower-order mode lines to move closer together and the more tightly spaced higher-order mode lines to separate. The adjusted mode-line spacing allows for proper sampling at the detector of the otherwise tightly spaced mode lines. The mode-line spacings of the detected mode spectra are then corrected via post-processing. The corrected mode spectra are then processed to obtain at least one characteristic of the waveguide.
Abstract:
There are disclosed a method and a system for non-contact control in a form of a polarization marker, a receiving device, and a microprocessor. In the polarization marker, beams are polarized with a customized cylinder polarizer, pass through a system of lenses and reflectors and are emitted into space, wherein the direction of the polarization vectors is axially symmetrical about the virtual axis of the polarization marker. The receiving device located in the working plane identifies the direction and position in space of the polarization marker in relation to the receiver, the results being interpreted by the microprocessor into control commands The receiving device consists of polarimeters spaced at a predetermined distance. The polarimeters identify the direction of the polarization vectors of incident beams from the polarization marker. Based on the data obtained from each polarimeter, the microprocessor calculates the direction and angles of site of the polarization marker.
Abstract:
A polarized light detection system includes a detection apparatus, a power source, and a photoresistor. The detection apparatus, power source and photoresistor are electrically connected with wires to form a galvanic circle. The photoresistor includes a photosensitive material layer with a first surface and a second surface opposite to each other, a first electrode layer located on the first surface of the photosensitive material layer, and a second electrode layer located on the second surface of the photosensitive material layer. The first electrode layer includes a carbon nanotube film structure.
Abstract:
A polarimeter is proposed that utilizes additional Stokes parameter measurements to determine both an average Stokes vector, as well as any rotation of the state of polarization around the Stokes vector. The optical polarimeter is configured to measure the state of polarization (SOP) under multiple, different conditions that yield both averaged Stokes vector and at least one other secondary (filtered) Stokes vector, the latter thus being determined from a subset of the conditions used to create the average Stokes vector. The secondary Stokes vector created from a filtered input will necessarily exhibit changes over time as a function of polarization transformations (based on filter-dependent changes), while the average Stokes vector will retain a constant value. Thus, a comparison of the average Stokes vector to the changing secondary Stokes vector allows for these polarization-dependent transformations to be recognized.
Abstract:
A light measurement apparatus includes a polarizing optical element, an orthogonal separating section, a light reception section, a rotation control section and a polarization state measuring section. The polarizing optical element converts detection light to linearly polarized light. The orthogonal separating section orthogonally separates the linearly polarized light into orthogonally separated lights. The light reception section receives the orthogonally separated lights. The rotation control section rotates the polarizing optical element so that a rotation axis extends along an optical path of the detection light. The polarization state measuring section measures a polarization state of the detection light using intensities of the orthogonally separated lights.
Abstract:
Perioperative patient blood glucose concentrations are determined by imposing patient effluent ultrafiltrate through a sample cell incorporated in an automated polarimeter. The device includes an optical platform, fluid handling subassembly, controlling electronics, and integration software. A stable collimated light source of known intensity and distinct specified wavelength is passed through an optical platform including a polarizer, retarder, bandpass filters, sample flow cell, analyzer and detector. The angular rotation of the transmitted light resulting from the glucose contained in patient ultrafiltrate collected in the sample flow cell is recorded and provides a measure of the glucose concentration.
Abstract:
A dual scanning and FTIR system for application in the Terahertz and broadband blackbody frequency range including sources for providing Thz and broadband blackbody range and electromagnetic radiation, at least one detector of electromagnetic radiation in the THZ and broadband blackbody ranges, and at least one rotating element between the source and detector.
Abstract:
An optical parameter measuring apparatus for measuring optical parameters of an object includes a light source, a polarizing module, a Stokes polarimeter and a calculating module. The light source emits a light which is polarized by the polarizing module and received by the Stokes polarimeter. According to the light information generated by the Stokes polarimeter, Mueller matrixes of linear birefringence, circular birefringence, linear dichroism, circular dichroism and linear/circular depolarization of the object, and Stokes vector established according to the Mueller matrixes, the calculating module calculates the optical parameters.
Abstract:
An optical module of an atomic oscillator includes: a surface emitting laser adapted to emit light; a depolarization element irradiated with the light emitted from the surface emitting laser, and adapted to dissolve a polarization state of the light irradiated; a polarization element irradiated with light having been transmitted through the depolarization element; a λ/4 plate irradiated with light having been transmitted through the polarization element, and having a fast axis disposed so as to rotate by 45 degrees with respect to a polarization transmission axis of the polarization element; a gas cell encapsulating an alkali metal gas, and irradiated with light having been transmitted through the λ/4 plate; and a light detection section adapted to detect intensity of light having been transmitted through the gas cell.
Abstract:
The present invention provides an optical detection system in which a first mirror of the control unit is used to receive light beam and redirect it into a first one-dimensional off-axis parabolic mirror. The first one-dimensional off-axis parabolic mirror then directs the light beam to a cylindrical lens. Through the mechanism of reflection, the cylindrical lens further directs the light beam to a second one-dimensional off-axis parabolic mirror. The second one-dimensional off-axis parabolic mirror then directs the light beam into a second mirror. The detection unit of the system is used to detect the light beam coming from the control unit, so as to convert the light signals into electric signals for the analysis in the process unit afterwards.