Abstract:
Disclosed is a compact, microprocessor-controlled instrument for fluorometric assays in liquid samples, the instrument having a floating stage with docking bay for receiving a microfluidic cartridge and a scanning detector head with on-board embedded microprocessor for controlling source LEDs, emission signal amplification and filtering in an isolated, low noise, high gain environment within the detector head. Multiple optical channels may be incorporated in the scanning head. In a preferred configuration, the assay is validated using dual channel optics for monitoring a first fluorophore associated with a target analyte and a second fluorophore associated with a control. Applications include molecular biological assays based on PCR amplification of target nucleic acids and fluorometric assays in general, many of which require temperature control during detection. Sensitivity and resistance to bubble interference during scanning are shown to be improved by use of a heating block with reflective mirror face in intimate contact with a thermo-optical window enclosing the liquid sample.
Abstract:
Gas analyzer systems and methods for measuring concentrations of gasses and in particular dry mole fraction of components of a gas. The systems and method allow for rapid measurement of the gas density and/or dry mole fraction of gases for a number of environmental monitoring applications, including high speed flux measurements. A novel coupling design allows for tool-free removal of a cell enclosing a flow path to enable in field cleaning of optical components.
Abstract:
An analyzing apparatus includes a microchip, a detecting unit and an analyzing-measuring unit. The microchip is formed of a light transmissive material formed with a separation fluid channel that is a light measuring part. The detecting unit includes an emitted-light guiding unit that emits light to the separation fluid channel, and a received-light guiding unit that receives light through the separation fluid channel. The emitted-light guiding unit or the received-light guiding unit placed at a position facing a microchip support table via the microchip abuts the microchip, and pushes the microchip in a direction toward the microchip support table. The analyzing-measuring unit includes the detecting unit, the emitted-light guiding unit and the received-light guiding unit, and detects a constituent of a sample filled in the separation fluid channel.
Abstract:
An optical instrument is provided for simultaneously illuminating two or more spaced-apart reaction regions with excitation beams generated by a light source. The light source can include an area light array of light emitting diodes, one or more solid state lasers, one or more micro-wire lasers, or a combination thereof. According to various embodiments, a Fresnel lens can be disposed along a beam bath between the light source and the reaction regions. Methods of analysis using the optical instrument are also provided.
Abstract:
An optical instrument monitors PCR replication of DNA in a reaction apparatus having a temperature cycled block with vials of reaction ingredients including dye that fluoresces in presence of double-stranded DNA. A beam splitter passes an excitation beam to the vials to fluoresce the dye. An emission beam from the dye is passed by the beam splitter to a CCD detector from which a processor computes DNA concentration. A reference strip with a plurality of reference emitters emit reference beams of different intensity, from which the processor selects an optimum emitter for compensating for drift. Exposure time is automatically adjusted for keeping within optimum dynamic ranges of the CCD and processor. A module of the beam splitter and associated optical filters is associated with selected dye, and is replaceable for different dyes.
Abstract:
A fluorometry device and method adapted to determine concentration of spectrally distinguishable species in a biological sample with a plurality of movable optical devices.
Abstract:
An instrument is provided that can monitor nucleic acid sequence amplification reactions, for example, PCR amplification of DNA and DNA fragments. The instrument includes a multi-notch filter disposed along one or both of an excitation beam path and an emission beam path. Methods are also provided for monitoring nucleic acid sequence amplifications using an instrument that includes a multi-notch filter disposed along a beam path.
Abstract:
An optical measurement apparatus includes a main body base, an optical base movably combined with the main body base, a measurement optical system fixed to the optical base, and an optical base moving mechanism which moves the optical base relative to the main body base. The optical base moving mechanism moves the optical base relative to the main body base between an internal measurement position and an external measurement position. A measurement object position of the measurement optical system coincides with an internal measurement object position within the main body base. The measurement object position of the measurement optical system coincides with an external measurement object position outside the main body base.
Abstract:
In some aspects, reader systems for optically detecting binding agents or analyte complexes in a sample as a result of performing biochemical assays can include: a housing defining a positioning receptacle to receive the sample; an excitation source to generate incident light directed at the sample; at least one solid-state photomultiplier detector configured to: i) receive a light emitted by at least one label associated with the binding agents and/or analyte complexes within the sample; and ii) produce a signal in response to receiving the light emitted by the at least one label or substrate solution that is physically or chemically modified by the said label, the at least one detector being connected to integrated signal processing electronics to process the signal; and a user interface in communication with the signal processing electronics for conveying one or more results of the one or more biochemical as says.
Abstract:
A sample analyzer has an illuminator for illuminating an assay sample to cause luminescence, and a support for a sample vessel containing the assay sample. The support is adapted to position the assay sample proximate the illuminator. A detector is positioned along an optical axis extending from the illuminator, through the positioned assay sample, to the detector, so as to detect the luminescence from the assay sample. A reflector is removably disposed between the illuminator and the assay sample so as to reflect a portion of the luminescence back through the positioned assay sample toward the detector.