Abstract:
An electron beam apparatus is provided having an electron emitting device which has a simple configuration, exhibits high electron emission efficiency, operates stably, and in which emitted electrons are effectively converged. The electron beam apparatus includes: an insulator having a notch on its surface; a gate positioned on the surface of the insulator; at least one cathode having a protruding portion protruding from an edge of the notch toward the gate, and positioned on the surface of the insulator so that the protruding portion is opposed to the gate; and an anode arranged to be opposed to the protruding portion via the gate, wherein the gate is formed on the surface of the insulator so that at least a part of a region opposed to the cathode is projected outward and recessed portions are provided in which ends of the gate are recessed and interpose the projected region.
Abstract:
A device includes a substrate, an insulating member disposed on a surface of the substrate, a gate, and a cathode. The insulating member has an upper surface apart from the surface of the substrate, and a side surface rising from the surface of the substrate between the upper surface and the surface of the substrate. The gate is disposed on the upper surface of the insulating member. The cathode is disposed on the side surface of the insulating member and has a portion opposing the gate. The side surface of the insulating member on which the cathode is disposed has a protruding portion protruding from an imaginary line connecting a position where the portion opposing the gate lies and a position where the insulating member rises from the surface of the substrate.
Abstract:
The electron-emitting device is configured such that an inclination angle θ2 of a lower portion from a height-direction intermediate portion to the lower end is larger than the inclination angle θ1 of an upper portion from a lower edge of the concave portion to a height-direction intermediate portion. And, an electric resistance of a lower cathode portion which is a portion of the lower portion of the cathode is larger than that of an upper cathode portion which is a portion of the upper portion of the cathode.
Abstract:
An electron-emitting device has at least a cathode electrode, an electron-emitting member which is electrically connected to the cathode electrode, and a resistive layer which is provided between the cathode electrode and the electron-emitting member. The resistive layer is composed of the same material as that of the electron-emitting member, and film density of the resistive layer is lower than film density of the electron-emitting member.
Abstract:
Provided is an electron-emitting device including an insulating member and a gate stacked on a substrate. A cathode is disposed on a side surface of the insulating member. The cathode has a plurality of protrusions provided along a corner of the insulating member. The gate has a plurality of protrusions extending toward the cathode.
Abstract:
A method of operating and process for fabricating an electron source. A conductive rod is covered by an insulating layer, by dipping the rod in an insulation solution, for example. The rod is then covered by a field emitter material to form a layered conductive rod. The rod may also be covered by a second insulating material. Next, the materials are removed from the end of the rod and the insulating layers are recessed with respect to the field emitter layer so that a gap is present between the field emitter layer and the rod. The layered rod may be operated as an electron source within a vacuum tube by applying a positive bias to the rod with respect to the field emitter material and applying a higher positive bias to an anode opposite the rod in the tube. Electrons will accelerate to the charged anode and generate soft X-rays.
Abstract:
A method for making a field emission cathode structure includes forming a ballast layer over a column metal layer, forming a dielectric layer over the ballast layer, forming a line metal layer over the dielectric layer, forming a trench in the line metal layer and the dielectric layer, the trench extending to the ballast layer, and forming a sidewall spacer and a sidewall blade adjacent a sidewall of the trench, where the sidewall spacer is between the dielectric layer and the sidewall blade, and where the conformal spacer is recessed as compared to the sidewall blade such that a gap is present between the sidewall blade and the line metal layer.
Abstract:
A Reflective Field Emission Display (FED) system using reflective field emission pixel elements is disclosed. In the FED system disclosed, each pixel elements is composed of at least one edge emitter that is operable to emit electrons and at least one reflector that is operable to first attract and then reflect the emitted electrons onto a transparent layer that is operable to attract the reflected electrons. The transparent anode layer is oppositely positioned with respect to the cathode or emitter edge. In a one aspect of the invention, a phosphor layer interposed between the transparent layer and the pixel element produces a light photon as reflected electrons are attracted to the transparent layer. In another aspect of the invention, a plurality of phosphor layers are applied to the transparent layer to produce a color display when reflected electrons are attracted to the transparent layer.
Abstract:
A Reflective Field Emission Display system, components and methods for fabricating the components is disclosed. In the FED system disclosed, a plurality of reflective edge emission pixel elements are arranged in a matrix of N rows and M columns, the pixel elements contain an edge emitter that is operable to emit electrons and a reflector that is operable to extract and laterally reflect emitted electrons. A collector layer, laterally disposed from said reflector layer is operable to attract the reflected electrons. Deposited on the collector layer is a phosphor layer that emits a photon of a known wavelength when activated by an attracted electron. A transparent layer that is oppositely positioned with respect to the pixel elements is operable to attract reflected electrons and prevent reflected electrons from striking the phosphor layer. Color displays are further contemplated by incorporating individually controlled sub-pixel elements in each of the pixel elements. The phosphor layers emit photons having wavelengths in the red, green or blue color spectrum.