Abstract:
The present investigation relate to an electron emission device which is composed by an insulated board in which a cathode electrode, an electron emission film, a gate insulation film, and a gate electrode were arranged, and an anode electrode estranged above said insulated board, and characterized by that an electron emission film is exposed to a bottom of an emitter hole provided in said gate insulation film on said insulated board, and an electron emission film in a part for an emitter hole central part being in a low position rather than an electron emission film of an emitter hole deep pool contiguity portion.
Abstract:
A fabrication method produces a mechanically patterned layer of group III-nitride. The method includes providing a crystalline substrate and forming a first layer of a first group III-nitride on a planar surface of the substrate. The first layer has a single polarity and also has a pattern of holes or trenches that expose a portion of the substrate. The method includes then, epitaxially growing a second layer of a second group III-nitride over the first layer and the exposed portion of substrate. The first and second group III-nitrides have different alloy compositions. The method also includes subjecting the second layer to an aqueous solution of base to mechanically pattern the second layer.
Abstract:
An electron emission device includes gate electrodes formed on a substrate. The gate electrodes are located on a first plane. An insulating layer is formed on the gate electrodes. Cathode electrodes are formed on the insulating layer. Electron emission regions are electrically connected to the cathode electrodes. The electron emission regions are located on a second plane. In addition, the electron emission device includes counter electrodes placed substantially on the second plane of the electron emission regions. The gate electrodes and the counter electrodes are for receiving a same voltage, and a distance, D, between at least one of the electron emission regions and at least one of the counter electrodes satisfies the following condition: 1(μm)≦D≦28.1553+1.7060t(μm), where t indicates a thickness of the insulating layer.
Abstract:
An electron emission device includes cathode electrodes and gate electrodes formed on a first substrate and crossing each other while interposing an insulation layer. Opening portions are formed at the gate electrodes and the insulation layer while exposing the cathode electrodes. Electron emission sources are formed on the cathode electrodes exposed through the opening portions each with an area smaller than the area of the opening portion. An anode electrode is formed on a second substrate. Phosphor layers are formed on the anode electrode each with long sides proceeding in a first direction and short sides proceeding in a second direction. When the first substrate is viewed from the plan side, the electron emission source satisfies the following condition: a
Abstract:
A field emission device and a backlight device using the field emission device includes a cathode electrode and a gate electrode formed in alternating parallel strips on a substrate, a catalytic metal layer arranged on the cathode electrode and adapted to enhance Carbon NanoTube (CNT) growth, and grown CNTs arranged on the catalytic metal layer.
Abstract:
An electron emission device includes first and second substrates facing each other, first electrodes formed on the first substrate, and second electrodes separated from the first electrodes by interposing an insulating layer. The first electrodes have first sub electrodes which with a partially removed portions, and second sub electrodes formed on at least one surface of the first sub electrodes with a transparent conductive material. Electron emission regions are formed on the second sub electrodes within the partially removed portions of the first sub electrodes. The electron emission regions are in surface contact with the second sub electrodes.
Abstract:
A field emission device manufactured by the disclosed method and employed in a display unit includes a glass substrate, an emitter electrode formed on the glass substrate, a carbon nanotube (CNT) emitter formed on the emitter electrode, and a gate stack formed around the CNT emitter. Electron beams are extracted from the CNT emitter and the extracted electron beams are focused onto a given position. The gate stack includes a mask layer that covers the emitter electrode provided around the CNT emitter, a gate insulating layer and a gate electrode sequentially formed on the mask layer, a focus gate insulating layer having double inclined planes facing the CNT emitter on the gate electrode, and focus gate electrode coated on the focus gate insulating layer.
Abstract:
A field emitter device consistent with certain embodiments has a substantially planar conductor forming a gate electrode. A conductive stripe forms a cathode on the insulating layer. An insulating layer covers at least a portion of the surface between the cathode and the gate. An anode is positioned above the cathode. An emitter structure, for example of carbon nanotubes is disposed on a surface of the cathodes closest to the anode. When an electric field is generated across the insulating layer, the cathode/emitter structure has a combination of work function and aspect ratio that causes electron emission from the emitter structure toward the anode at a field strength that is lower than that which causes emissions from other regions of the cathode. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
Abstract:
The present invention provides a cold cathode electron source and a method for manufacturing the cold cathode electron source. The cold cathode electron source includes a substrate on which are deposited a catalyst metal layer, an insulation layer, and a gate metal layer; a cavity section formed through the catalyst metal layer, the insulation layer, and the gate metal layer; and an emitter realized through a plurality of carbon nanotubes, which are grown from walls of the catalyst metal layer exposed in the cavity section and which have long axes parallel to the substrate. The method includes depositing a catalyst metal layer, an insulation layer, and a gate metal layer on a substrate; forming a cavity section by removing a portion of the gate metal layer, the insulation layer, and the catalyst metal layer using a photolithography process; and forming an emitter by mounting the substrate on a chemical vapor deposition reactor and growing carbon nanotubes in a low temperature atmosphere of 500˜800 degrees Celsius (° C.).
Abstract:
A field emission device including a cathode having an electric field emitter for emitting electrons, a field emission inducing gate for inducing electron emission, and an anode for receiving the emitted electrons. A field emission suppressing gate is interposed between the cathode and the field emission inducing gate for suppressing electron emission, so that problems such as gate leakage current, electron emission due to anode voltage, and electron beam spreading of the conventional field emission device are significantly overcome.