Abstract:
A cell for a vacuum ultraviolet plasma light source, the cell having a closed sapphire tube containing at least one noble gas. Such a cell does not have a metal housing, metal-to-metal seals, or any other metal flanges or components, except for the electrodes (in some embodiments). In this manner, the cell is kept to a relatively small size, and exhibits a more uniform heating of the gas and cell than can be readily achieved with a hybridized metal/window cell design. These designs generally result in higher plasma temperatures (a brighter light source), shorter wavelength output, and lower optical noise due to fewer gas convection currents created between the hotter plasma regions and surrounding colder gases. These cells provide a greater amount of output with wavelengths in the vacuum ultraviolet range than do quartz or fused silica cells. These cells also produce continuous spectral emission well into the infrared range, making them a broadband light source.
Abstract:
A light-emitting discharge tube in which an outer wall surface of a glass tube is made less susceptible to flaws by forming a protective film on the outer wall surface of the glass tube, a method of fabricating the light-emitting discharge tube, and a protective film forming apparatus are provided. The light-emitting discharge tube defines light-emitting discharge regions by a plurality of external electrodes. The outer wall surface of the light-emitting discharge tube (the glass tube) is coated with the protective film (a metal film, a conductive metal oxide film, an insulating metal oxide film, or an organic film).
Abstract:
A high-pressure metal halide discharge lamp which comprises, as filling, only zinc, a halogen and a noble gas. In order to improve the color rendering index, a calcium halide may be added to the lamp filling. The coupling-in of energy preferably takes place without electrodes in the radio-frequency range or in the microwave range, but may also be carried out by means of metal electrodes.
Abstract:
A flat fluorescent lamp is provided. Wherein, a discharge gas is disposed in a chamber, and a fluorescent material is disposed on a first inner wall and a second inner wall of the chamber. First electrode sets are disposed on the first inner wall, and second electrode sets aligned with the first electrodes sets are disposed on the second inner wall. A dielectric layer overlies the electrode sets. Each first electrode set comprises two first electrodes and a second electrode disposed between these first electrodes. Each second electrode set comprises two third electrodes and a fourth electrode disposed between these third electrodes. A first light-emitting area and a second light-emitting area are formed in each pair of the corresponding first and second electrode sets, and the projections of the first and second light-emitting areas on the first inner wall are not overlaid or just partially overlaid.
Abstract:
A flat fluorescent lamp includes a lamp body and first external electrodes. The lamp body has discharge spaces formed therein. The first external electrodes are disposed at a first end portion of an outer surface of the lamp body and a second end portion that is opposite to the first end portion to define a first region where the discharge spaces overlap the first external electrodes and a second region where the discharge spaces do not overlap the first external electrodes. Each of the discharge spaces has a first width at the first region and a second width that is smaller than the first width at the second region. Therefore, an overlapping region between the first external electrodes and the discharge space increases to lower the discharge voltage.
Abstract:
A dielectric barrier discharge lamp is disclosed, which comprises a discharge vessel having a principal axis. The discharge vessel encloses a discharge volume filled with a discharge gas. The discharge vessel further comprises end portions intersected by the principal axis. At least one electrode of a first type and at least one electrode of a second type are used in the lamp. The electrodes of one type are energized to act as a cathode and the electrodes of other type are energized to act as an anode. The electrodes are substantially straight, elongated electrodes with a longitudinal axis substantially parallel to the principal axis of the discharge vessel. At least one of the electrodes is positioned within the discharge volume, and the electrodes of at least one type are isolated from the discharge volume by a dielectric layer. At least one of the electrodes inside the discharge volume is provided with an outer luminescent layer. Additionally, at least one of the electrodes inside the discharge volume provided with a luminescent layer may have a reflective layer under the luminescent layer.
Abstract:
A backlight assembly includes a flat fluorescent lamp, a buffering member and a bottom chassis. The flat fluorescent lamp includes a lamp body generating light and an electrode portion formed on the lamp body. The buffering member contacts the electrode portion and includes at least one hole. The bottom chassis includes a bottom plate and a sidewall to receive the flat fluorescent lamp and the buffering member and includes at least one hole.
Abstract:
Disclosed are a new Mercury-free flat light source structure capable of enhancing and adjusting brightness, maintaining stable and uniform discharge, and improving luminous efficiency, and a large flat light source apparatus using the same Mercury-free flat light source structure as a unit cell capable of adjusting the brightness and causing local discharges in selected areas, and a driving method thereof. The flat light source structure according to the present invention includes an upper substrate made of a light transmitting material; a lower substrate separated from the upper substrate by a distance; a barrier rib for maintaining the distance, thereby defining a discharge space filled with a discharge gas with a predetermined pressure; a phosphor coated on at least one of the inner surfaces of the upper substrate and the lower substrate, respectively; a pair of main electrodes disposed at predetermined positions on the surface of the upper or lower substrate and applied with a predetermined driving voltage, frequency and duty ratio to excite the phosphor by plasma generated due to electric field induced in the discharge space; an auxiliary electrode formed at a predetermined position on the lower and/or upper substrate(s) to have a parallel component which is parallel with any one of the main electrodes when viewing the discharge space from the upper substrate and a perpendicular component which traverses the electrodes across the pair of main electrodes.
Abstract:
A backlight unit containing one or more light sources and fabrication method are provided. Each light source has a tube with a first bent side connected to a first end and a second bent side connected to a second end. First and second electrodes are disposed on the tube between the bent sides and their corresponding ends. The backlight unit further includes a first plate having oppositely spaced edge regions. Each edge region has holes. A first portion of each light source is disposed above the first plate and a second portion of each light source is disposed below the first plate. The first and second common electrodes are electrically connected to the first and second electrodes disposed on the tube.
Abstract:
An amalgam assembly for a fluorescent lamp includes a glass exhaust tubulation extending from an envelope portion of the lamp toward a base portion of the lamp, the tubulation being closed at an end adjacent the lamp base portion, and a glass body disposed in the tubulation and retained by a pinched portion of the tubulation, the glass body being disposed between the pinched portion and the closed end of the tubulation. A mercury amalgam body is disposed between the glass body and the closed end of the tubulation. A mercury wetting metallic layer is disposed on a selected one of (i) an inside surface of the tubulation between the pinched portion and the closed end of the tubulation, and (ii) a surface of the glass body whereby to a wet at least one of (i) the interior surface of the glass tubulation and (ii) the surface of the glass body, to prevent the amalgam, when liquidized, from flowing past the tubulation pinched portion and into the lamp envelope.