Abstract:
A ceramic circuit structure comprising a plurality of ceramic layers and at least one electronic component embedded within the plurality of ceramic layers. Within a first one of the ceramic layers is a via that passes through the ceramic layer. A contact pad is formed on a surface of the ceramic layer. A barrier cap is formed between the via and the contact pad. A dielectric ring covers a peripheral portion of the contact pad and an adjacent portion of the dielectric material layer surface immediately surrounding the contact pad, such that any solder that is applied to the contact does not contact the peripheral portion of the contact pad or the ceramic material.
Abstract:
An insulating thick film composition for forming a solder resist layer having a high degree of positional accuracy is provided, which can suppress warping and undulation of a multilayer ceramic substrate and can maintain the superior electrical characteristics thereof. The insulating thick film composition is primarily composed of a powdered ceramic having the same composition system as that of a powdered ceramic contained in a green ceramic sheet, and the mean particle diameter of the powdered ceramic of the insulating thick film composition is smaller than that of the powdered ceramic contained in the green ceramic body.
Abstract:
A thick film is formed initially as a paste and made up of such oxidizable conductor ingredients as copper which is then mixed with glass frit and next printed on a non-conductive inert substrate by silk screening. The silk screen printed thick film with vehicle is then dried, and a coating of boron in suitable paste or paint form having been mixed with a thixotropic organic vehicle is covered over the entirety of the substrate and silk screen printed thick film. The resulting product after a second air drying is then fired to bond the glass frit-copper as a thick film onto the substrate, with the copper particles being sintered throughout into a thick film. Superposed boron, where contiguous with the copper printing, is fused as a protective layer over the copper allowing the sintering of the copper and bonding with the substrate to occur without oxidation of the copper. Oxidized boron that covers portions of the substrate not occupied by the thick film and not superposing the copper layer is then washed away and the boron bonded to the copper remains as a protective coating.
Abstract:
A novel process for fastening ceramic material such as alumina or the like to metallic material such as an electrical conductor. The process is characterized by the fact that a solder wettable, oxidation-resistant barrier is used, on metal particles printed onto the ceramic. In some advantageous processes, the carbide layer allows metallizing processes to be carried out in non-hydrogen atmospheres. The process requires no expensive noble metal; and it utilizes a barrier material which is sufficiently stable to tolerate conductive film formation at high temperatures. Nickel-carbide coated nickel is a particularly favorable material for use in the invention because it is conductive, in the ohmic sense, and is readily wetted by common solders.Also disclosed are novel articles and compositions useful in practice of the process of the invention, and novel articles produced by the process of the invention.
Abstract:
An electrical component provides a ceramic element located on or in a dielectric substrate between and in contact with a pair of electrical conductors, wherein the ceramic element includes one or more metal oxides having fluctuations in metal-oxide compositional uniformity less than or equal to 1.5 mol % throughout the ceramic element. A method of fabricating an electrical component, provides or forming a ceramic element between and in contact with a pair of electrical conductors on a substrate including depositing a mixture of metalorganic precursors and causing simultaneous decomposition of the metal oxide precursors to form the ceramic element including one or more metal oxides.
Abstract:
Embodiments of the present invention provide a substrate support assembly including an electrostatic chuck with enhanced heat resistance. In one embodiment, an electrostatic chuck includes a support base, an electrode assembly having interleaved electrode fingers formed therein, and an encapsulating member disposed on the electrode assembly, wherein the encapsulating member is fabricated from one of a ceramic material or glass.
Abstract:
A wiring board for a fingerprint sensor includes a core insulating layer having a thickness of 30 μm to 100 μm, an inner buildup insulating layer having a thickness of 17 μm to 35 μm, an outer buildup insulating layer having a thickness of 7 μm to 25 μm, a plurality of fingerprint reading outer strip-shaped electrodes, a plurality of fingerprint reading inner strip-shaped electrodes, and an upper solder resist layer covering the outer strip-shaped electrodes by a thickness of 3 μm to 15 μm.
Abstract:
A method of fabricating a capacitance touch panel module includes forming a plurality of first conductive patterns on a substrate comprising a touching area and a peripheral area along a first orientation, a plurality of second conductive patterns along a second orientation, and a plurality of connecting portions in the touching area; forming a plurality of insulated protrusions, in which each insulated protrusion covering one connecting portion, and forming an insulated frame on the peripheral area; and forming a bridging member on each insulated protrusion.
Abstract:
A method of fabricating a capacitance touch panel module includes forming a plurality of first conductive patterns on a substrate comprising a touching area and a peripheral area along a first orientation, a plurality of second conductive patterns along a second orientation, and a plurality of connecting portions in the touching area; forming a plurality of insulated protrusions, in which each insulated protrusion covering one connecting portion, and forming an insulated frame on the peripheral area; and forming a bridging member on each insulated protrusion.
Abstract:
A wiring substrate includes a substrate main body which is formed of a ceramic laminate and has a rectangular shape in plan view, and which has a front surface and a back surface and has four side surfaces, each being located between the front surface and the back surface, and having a groove surface located on a side toward the front surface and a fracture surface located on a side toward the back surface; and a metalized layer which is formed on the front surface of the substrate main body so as to extend along the four side surfaces, and which has a rectangular frame shape in plan view, wherein a horizontal surface of the ceramic laminate of the substrate main body is exposed between the metalized layer and the groove surface of each side surface of the substrate main body.