Abstract:
A system to configure a conductive pathway and a method of forming a system of configurable conductivity pathways are described. The system includes a photosensitive layer that becomes conductive based on photoexcitation, and a light source layer deposited over the photosensitive layer, the light source layer selectively providing the photoexcitation to the photosensitive layer. The system further includes a controller to control the light source layer, the controller illuminating a portion of the light source layer corresponding with a user input image to photoexcite the photosentive layer and configure the conductive pathway in the photosensitive layer according to the image.
Abstract:
A prepreg includes a fiber base material and a thermosetting resin composition impregnated into the fiber base material. The thermosetting resin composition contains a thermosetting resin including an epoxy resin; a curing agent; an inorganic filler; and an acrylic acid ester copolymer having a weight average molecular weight of 10×104 or more and less than 45×104. A content of the inorganic filler is 150 parts by mass or more relative to a total of 100 parts by mass of the thermosetting resin and the curing agent. A content of the acrylic acid ester copolymer is more than 30 parts by mass and 90 parts by mass or less relative to the total of 100 parts by mass of the thermosetting resin and the curing agent.
Abstract:
The present invention is a dielectric ink and means for printing using said ink. Approximately 10-20% of the ink is a custom organic vehicle made of a polar solvent and a binder. Approximately 30-70% of the ink is a dielectric powder having an average particle diameter of approximately 10-750 nm. Approximately 5-15% of the ink is a dielectric constant glass. Approximately 10-35% of the ink is an additional amount of solvent. The ink is deposited on a printing substrate to form at least one printed product, which is then dried and cured to remove the solvent and binder, respectively. The printed product then undergoes sintering in an inert gas atmosphere.
Abstract:
A wiring substrate includes ceramic layers and a conductive member. The ceramic layers have an uppermost ceramic layer and a lowermost ceramic layer. The conductive member includes an upper conductive layer disposed on an upper surface of the uppermost ceramic layer, an internal conductive layer interposed between the ceramic layers, and a lower conductive layer disposed on a lower surface of the lowermost ceramic layer. The conductive member defines vias electrically connecting the upper conductive layer, the internal conductive layer, and the lower conductive layer. A total number of a first vias connected to the lower conductive layer is larger than a total number of a second vias connected to the upper conductive layer.
Abstract:
An inorganic filler according to an embodiment of the present invention includes a boron nitride agglomerate and a coating layer formed on the boron nitride agglomerate and including a —Si—R—NH2 group, and R is selected from the group consisting of an alkyl group having 1 to 3 carbon atoms, an alkene group having 2 to 3 carbon atoms, and an alkyne group having 2 to 3 carbon atoms.
Abstract:
A prepreg for printed wiring boards that has a low coefficient of thermal expansion in a plane direction, has excellent heat resistance and drilling workability, and, at the same time, can retain a high level of flame retardance includes a base material, a resin composition impregnated into or coated on the base material, and huntite. The resin includes (A) an inorganic filler that is a mixture composed of a hydromagnesite represented by xMgCO3.yMg(OH)2.zH2O wherein x:y:z is 4:1:4, 4:1:5, 4:1:6, 4:1:7, 3:1:3, or 3:1:4; (B) an epoxy resin; and (C) a curing agent. The prepreg can be used to prepare a laminated sheet and a metal foil-laminated sheet.
Abstract:
A printed wiring board includes a first circuit substrate having first and second surfaces, and a second circuit substrate having third and fourth surfaces such that the first substrate is laminated on the third surface and that the first and third surfaces are opposing each other. The second substrate includes a conductor layer, a first insulating layer including reinforcing material and formed on the conductor layer, and mounting via conductors formed in the first insulating layer and connected to the conductor layer such that the second substrate has a mounting area on the third surface and that the mounting via conductors have via bottoms forming pads positioned to mount an electronic component in the mounting area, and the first substrate includes an insulating layer which does not contain reinforcing material and has an opening through the insulating layer and exposing the via bottoms forming the pads in the mounting area.
Abstract:
An inorganic filler according to an embodiment of the present invention includes a boron nitride agglomerate and a coating layer formed on the boron nitride agglomerate and including a —Si—R—NH2 group, and R is selected from the group consisting of an alkyl group having 1 to 3 carbon atoms, an alkene group having 2 to 3 carbon atoms, and an alkyne group having 2 to 3 carbon atoms.
Abstract:
According to an aspect of the invention, a wiring board includes an inorganic insulating layer and a conductive layer disposed on part of one main surface of the inorganic insulating layer. The part of the one main surface of the inorganic insulating layer includes a plurality of first recessed portions each of which has at least partially circular shape in a plan view. Part of the conductive layer enters into the plurality of first recessed portions. According to the aspect of the invention, it is possible to obtain a wiring board capable of reducing disconnection of the conductive layer and therefore having superior electrical reliability.
Abstract:
In a wiring board, on an insulating layer of an outermost layer, there are provided a plurality of strip-shaped wiring conductors which are partially provided with semiconductor element connection pads to which electrode terminals of a semiconductor element are connected, at positions which prevent the semiconductor element connection pads adjacent to each other from being laterally arranged, and a solder resist layer having openings for individually exposing the semiconductor element connection pads is adhered on the insulating board as the outermost layer and on the strip-shaped wiring conductors, wherein the solder resist layer internally contains an insulating filler, and the insulating filler is sunk below the upper surfaces of the strip-shaped wiring conductors.