Abstract:
Disclosed is a manufacturing method of a printed circuit board. The method in accordance with an embodiment of the present invention includes: providing a laminated substrate having an insulator as well as a first metal layer and a second metal layer, which are sequentially laminated on one side of the insulator; processing a via hole in the laminated substrate; forming a seed layer on an inner wall of the via hole and on a surface of the second metal layer; plating an inside of the via hole and the surface of the second metal layer with a conductive material that is different from a material of the second metal layer; etching the seed layer and the conductive material, formed on the second metal layer; etching the second metal layer; and forming a first circuit pattern by selectively etching the first metal layer.
Abstract:
An embodiment of the present invention has an insulating substrate in which a first concave hole for mounting an LED chip and a second concave hole for connecting a metallic small-gauge wire are formed, where a metallic sheet that serves as a first wiring pattern is formed at a portion that includes the first concave hole, a metallic sheet that serves as a second wiring pattern is formed at a portion that includes the second concave hole, an LED chip is mounted upon the metallic sheet inside the first concave hole, the LED chip is electrically connected to the metallic sheet inside the second concave hole via a metallic small-gauge wire, and the chip-type LED is sealed with a clear resin.
Abstract:
A circuit board including: an insulator having a trench; a first circuit pattern formed to bury a portion of the trench; and a second circuit pattern formed on a surface of the insulator having the trench formed therein.
Abstract:
A method for plating a belt substrate including conveying a belt substrate through a plating tank, contacting an immersed cathode power-supply device and/or an auxiliary cathode power-supply device with the belt substrate conveyed into the interior of the plating tank such that the belt substrate becomes a cathode, and electrically plating a surface of the belt substrate in the interior of the plating tank while the immersed cathode power-supply device and/or the auxiliary cathode power-supply device maintains cathode power-supply to the belt substrate conveyed into the interior portion of the plating tank. The immersed cathode power-supply device and the auxiliary cathode power-supply device are positioned in the interior portion of the plating tank and are electrically connected by a short circuit wiring.
Abstract:
A carrier member for transmitting circuits, which is a component of a coreless printed circuit board having circuit patterns embedded therein, and which can be used to provide a high-density and highly reliable printed circuit board by forming protrusions only on the lower ends of the circuit patterns, a coreless printed circuit board using the carrier member, and methods of manufacturing the carrier member and the coreless printed circuit board.
Abstract:
A method of manufacturing a printed circuit board, including: preparing a double-sided substrate which comprises an insulating layer, a first copper layer formed on one side of the insulating layer and a second copper layer formed on the other side of the insulating layer; forming a via-hole through the second copper layer and the insulating layer; forming a plating layer on an inner wall of the via-hole; and forming, on the double-sided substrate, a via, a first circuit layer including a circuit pattern that is formed on a surface of the via having a minimum diameter and has a line width smaller than the minimum diameter of the via, and a second circuit layer including a lower land.
Abstract:
A multilayer printed wiring board includes one or more resin layers having via-holes and a core layer having via-holes. The via-holes formed in the one or more resin layers are open in the direction opposite to the direction in which the via-holes formed in the core layer are open. A method for manufacturing a multilayer printed wiring board includes a step of preparing a single- or double-sided copper-clad laminate; a step of forming lands by processing the copper-clad laminate; a step of forming a resin layer on the upper surface of the copper-clad laminate, forming openings for via-holes in the resin layer, and then forming the via-holes; and a step of forming openings for via-holes in the lower surface of the copper-clad laminate and then forming the via-holes.
Abstract:
Provided are a flexible printed circuit that reduces the chance of the occurrence of short-circuit failures caused by swarf generated from punching out flexible printed circuit, and an electric circuit structure having this flexible printed circuit and an electric circuit substrate to which the flexible printed circuit is connected. A flexible printed circuit (100) has a wiring pattern (2) formed on the flexible base film (1). The flexible printed circuit (100) is individually punched out to be separated in a condition where the wiring pattern (2) is disposed on the base film (1), and the wiring pattern (2) has a narrowed portion (2c) near the edge of the base film (1).
Abstract:
Disclosed herein is an electronic component-embedded printed circuit board, including: a flexible film; an insulation layer formed on one side of the flexible film; an electronic component mounted on the one side of the flexible film in a face-down manner such that the electronic component is buried in the insulation layer; and a circuit layer including a connecting pattern which is formed on the one side of the flexible film and is connected with a connecting terminal of the electronic component by a connecting member. The electronic component-embedded printed circuit board is advantageous in that the position alignment between the connecting patterns and the connecting terminals is easy and the connection reliability therebetween is high because the connecting patterns formed on a flexible film are directly connected to the connecting terminals of an electronic component using connecting members, and in that the production cost thereof can be reduced because additional rewiring is not required.
Abstract:
A printed wiring board includes an interlayer resin insulation layer having the first surface, the second surface on the opposite side of the first surface, and a penetrating hole for a via conductor, a conductive circuit formed on the first surface of the interlayer resin insulation layer, a via conductor formed in the penetrating hole and connected to the conductive circuit on the first surface of the interlayer resin insulation layer, and a surface-treatment coating formed on the surface of the via conductor exposed from the second surface of the interlayer resin insulation layer through the penetrating hole. The via conductor is made of a first conductive layer formed on the side wall of the penetrating hole and a plated-metal filling the penetrating hole. The surface of the via conductor is recessed from the second surface of the interlayer resin insulation layer.