Abstract:
The invention discloses a scanning microscope for optical measurement with high spatial resolution of a specimen point of a specimen, having a light source for emitting an exciting light beam suitable for exciting an energy state of the specimen; a detector for detection of the emitted light; and a stimulating light beam, coming from the light source, for generating stimulated emission of the specimen excited by the exciting light beam at the specimen point, the exciting light beam and the stimulating light beam being arranged in such a way that their intensity distributions in the focal region partially overlap, wherein optical elements which shape the stimulating light beam are combined into at least one module that is positionable in the beam path of the scanning microscope.
Abstract:
The present invention provides microfluidic devices and systems that utilize optical detection systems, and where one or more light altering optical elements are integrated into the body structure of the microfluidic device. The resulting devices perform at least a portion of the optical manipulations used in the optical detection method employed.
Abstract:
A gap measuring method characterized by comprising the steps of: applying a plurality of color lights to a member provided with a gap, to produce color interference fringes; obtaining respective intensities of the color lights in the images of the interference fringes taken by a color camera, at each of predetermined positions of each image, so as to compute and actual ratio among the obtained intensities of the color lights for each of the predetermined positions; and obtaining gap values of a plurality of points of the gap provided in the member, based on said actual ratio and theoretical ratios each of which is computed based on intensities of said color lights in an image corresponding to each of preliminarily set gap values.
Abstract:
A light irradiation part arrangement of a heating device of the light irradiation type having plurality of lamps in a light irradiation chamber. The light irradiation part arrangement includes a mirror behind the emitting tube portions of the lamps which reflects the light from the emitting tube portions, a plate located above the mirror, and a duct located between the mirror and the plate adapted to supply cooling air to the plurality of lamps, the duct defining a hollow area between the mirror and the plate that is positioned to allow routing of the at least one insertion portion. The duct is connected to at least one cooling air inlet opening that lets in cooling air, and has at least one cooling air exhaust opening that blows cooling air out of the duct toward the light irradiation chamber.
Abstract:
One problem that arises in the context of controlling tunable filters, and more specifically, Fabry-Perot tunable filters concerns the control algorithms for these MOEMS devices. An optical filter system comprises a tunable optical filter that scans a pass band across a signal band to generate a filtered signal. A filter tuning voltage generator generates a tuning voltage to the optical tunable filter. A photodetector generates an electrical signal in response to the filtered signal. Finally, a controller, that is responsive to the photodetector, triggers the filter tuning voltage generator. To increase the ease at which the results of a scan of the signal band of a WDM signal can be analyzed and improve spectral resolution, the change in the pass band of the tunable filter as a function of time is linearized in frequency or wavelength. This is achieved through the use of essentially an arbitrary waveform generator as the filter tuning voltage generator. The generator is programmed with an inverse of the filter's tuning characteristic.
Abstract:
The present invention discloses a method and an arrangement for scanning microscopic specimens (15) with a scanning device. The microscopic specimen (15) is displaceable on a specimen stage (35) in at least two spatial directions. A light beam (3) scans the specimen (15) within a defined scan field (52) by way of a scanning module (7), and the light (17) proceeding from the specimen is detected. A PC (34) is also provided for analysis and calculation. The scan field (52) is defined in such a way that it incompletely encompasses a specimen region that is to be examined. Means (23, 31) are provided which displace the specimen stage (35) in such a way that the entire specimen region of interest can be covered by the plurality of resulting scan fields (521, 522, . . . 52n). The data of the individual scan fields (521, 522, . . . 52n) detected from the specimen region being examined are assembled in the PC (34) into an overall image.
Abstract:
A diffraction surface and a method of making the surface. The surface may be applied to labels and other items, to identify the original of the goods to which the label is attached. The surface can include a block grating. For example, the surface could include a plurality of blocks which adapted when illuminated will produce a recognisable image on an intercepting surface. The diffraction grating is manufactured by processing a data stream indicative of the image. Processing of the data stream includes obtaining a Fourier Transform of the data stream. Preferably, the data stream is clipped and quantised.
Abstract:
An optical waveguide structure for distributing light from a light source includes a cylindrical sleeve configured to accommodate and receive light from the light source. The sleeve includes a central axis. A waveguide collar is formed from a solid, planar block of material. The block of material has a central portion configured to accommodate and surround the sleeve. The first and second output arms extend in a plane away from the central portion. The plane is substantially perpendicular to the central axis.
Abstract:
The invention relates to a color photosensor for sensing the color contents of incident light. In order to provide a color photosensor which is cheap to produce and which allows the control of light in as well intensity as color a color photosensor is proposed comprising: a sensing unit (2) divided into four sensing areas (21, 22, 23, 24) each sensing the color content of incident light and outputting a sensing current, a filter unit (3) comprising four filter elements (31, 32, 33, 34) each being assigned and adapted to one of said sensing areas, said filter elements comprising a cyan colored filter element, a yellow colored filter element and a magenta colored filter element, and a subtraction unit (4) for separately subtracting each of the three sensing currents outputted from the three sensing areas to which one of said colored filter elements is assigned, from the forth sensing current obtaining color signals proportional to the red, green and blue content of said incident light.
Abstract:
A lamp with a reflector comprises a high pressure discharge lamp and a reflector. The reflector has a first opening and a second opening. Clearance between a sealing portion of the high pressure discharge lamp and the second opening is substantially filled. The sealing portion includes a first glass portion extending from a luminous bulb and a second glass portion provided in the inside of the first glass portion, and the sealing portion has a portion to which a compressive stress is applied. Moreover, when the sealing portion is disposed to extend in a substantially horizontal direction, a portion of the reflector is formed with an air inlet for introducing an air flow striking against an upper portion of the luminous bulb 1 and then coming into a lower portion of the luminous bulb 1.