Abstract:
The invention relates to an electrode having a nano-hollow array on the surface thereof, the nano-hollow array comprising a plurality of nano-pores or nano-balls, each pore having a diameter of less than 500 nm, formed by a process comprising depositing a uniform metal film on the electrode structure surface at a rate of 2 Å per second or less, annealing the metal film under rapid anneal conditions at a temperature within about 100 degrees of the melting point of the metal film and without subjecting the metal film to a temperature ramp-up to create metal droplets, and anodizing and over-anodizing the metal droplets in the presence of an anodization agent for the metal at from 20 to 200 volts at 0.1 to 2 amps to create nano-pores in the metal droplets or nano-balls to, creating increased surface area and increased electric field around the electrode which enhances speed of fill gas ionization.
Abstract:
Provided are an electron emission material having a reduced work function, and an electron emission element that has lower power consumption and/or high current density and exhibits excellent electron emission performance. An electron emission material includes a semiconductor substrate having atomic steps on a surface thereof and a flat region between two of the atomic steps adjacent to each other, and an adsorbed layer arranged in the flat region. The adsorbed layer contains at least one element selected from an alkali metal element, an alkaline-earth metal element, and Sc.
Abstract:
The present invention is directed to a nanotube coated with diamond or diamond-like carbon, a field emitter cathode comprising same, and a field emitter comprising the cathode. It is also directed to a method of preventing the evaporation of carbon from a field emitter comprising a cathode comprised of nanotubes by coating the nanotube with diamond or diamond-like carbon. In another aspect, the present invention is directed to a method of preventing the evaporation of carbon from an electron field emitter comprising a cathode comprised of nanotubes, which method comprises coating the nanotubes with diamond or diamond-like carbon.
Abstract:
The cathode member for electron beam generation of the present disclosure includes: 95% by area or more of a single phase or two phases of a compound composed of iridium and cerium. A total content of one or more subcomponents of metallic iridium and an oxide of one or more elements of iridium and cerium is 5% by area or less of the cathode member.
Abstract:
Aspects include a method for treating a polycrystalline material, the method comprising: exposing a surface of the polycrystalline material to a plasma thereby changing the surface of the polycrystalline material from being characterized by a starting condition to being characterized by a treated condition; wherein: the surface comprises a plurality of crystallites each having the composition MB6, M being a metal element; the plasma comprises ions, the ions being characterized by an average ion flux selected from the range of 1.5 to 100 A/cm2 and an average ion energy that is less than a sputtering threshold energy; the starting condition of the surface is characterized by a first average work function and the treated condition of the surface is characterized by a second average work function; and the second average work function is less than the first average work function.
Abstract:
An electron emission element (20) includes a first electrode (30a) and a second electrode (40) which are arranged facing each other, an intermediate layer (50) that is provided between the first electrode (30a) and the second electrode (40), and an insulating layer (60) that is formed with a thickness d1 on a substrate (30). A level difference between the insulating layer (60) and the first electrode (30a) is smaller than the thickness d1 of the insulating layer (60).
Abstract:
In order to provide a thermionic emission filament capable of ensuring a long life and improving an analysis accuracy of a mass spectrometer using the thermionic emission filament, in the thermionic emission filament including a core member through which electric current flows and an electron emitting layer which is formed so as to cover a surface of the core member, the electron emitting layer is configured to have denseness for substantial gas-tight integrity.
Abstract:
Methods for fabricating refractory metal scandate nanocomposite powders with homogeneous microstructured refractory metal grains and a uniform nanosized dispersion of scandia are provided. The powders prepared by the sol-gel methods have a spherical morphology, a narrow distribution of particle sizes and a very uniform dispersion of nanosized scandia particles joined to the tungsten grains. The powder particle sizes can range from nanometers to micrometers. The powders can be pressed into porous cathode structures that can be impregnated with emissive materials to produce high current density and long life cathodes for high-power terahertz vacuum electron devices. The sol-gel fabrication methods allow control over the materials, particle size, particle composition and pore size and distribution of the cathode structure by manipulation of the process parameters.