Abstract:
An optical system for use with a multi-channel wide field imaging system, the optical system including an objective lens, a dichroic element to split light into a first wavelength range and a second wavelength range, the dichroic element positioned to receive near parallel chief rays from the objective lens, a first channel lens system to receive light of the first wavelength range from the dichroic element; and a second channel lens system to receive light of the second wavelength range from the dichroic element.
Abstract:
A highly corrected relay system for medical endoscopes or the like is provided. The system includes a plurality of bonded lenses that are selected to provide color correction from the blue region of the spectrum through to the near infrared region of the spectrum. The system allows co-located visible and near infrared images to be resolved on a single detector.
Abstract:
Methods and systems for characterizing tissue of a subject include acquiring and receiving data for a plurality of time series of fluorescence images, identifying one or more attributes of the data relevant to a clinical characterization of the tissue, and categorizing the data into clusters based on the attributes such that the data in the same cluster are more similar to each other than the data in different clusters, wherein the clusters characterize the tissue. The methods and systems further include receiving data for a subject time series of fluorescence images, associating a respective cluster with each of a plurality of subregions in the subject time series of fluorescence images, and generating a subject spatial map based on the clusters for the plurality of subregions in the subject time series of fluorescence images. The generated spatial maps may then be used as input for tissue diagnostics using supervised machine learning.
Abstract:
Vessel perfusion and myocardial blush are determined by analyzing fluorescence signals obtained in a static region-of-interest (ROI) in a collection of fluorescence images of myocardial tissue. The blush value is determined from the total intensity of the intensity values of image elements located within the smallest contiguous range of image intensity values containing a predefined fraction of a total measured image intensity of all image elements within the ROI. Vessel (arterial) peak intensity is determined from image elements located within the ROI that have the smallest contiguous range of highest measured image intensity values and contain a predefined fraction of a total measured image intensity of all image elements within the ROI. Cardiac function can be established by comparing the time differential between the time of peak intensity in a blood vessel and that in a region of neighboring myocardial tissue both pre and post procedure.
Abstract:
Adaptive imaging methods and systems for generating enhanced low light video of an object for medical visualization are disclosed and include acquiring, with an image acquisition assembly, a sequence of reference frames and/or a sequence of low light video frames depicting the object, assessing relative movement between the image acquisition assembly and the object based on at least a portion of the acquired sequence of reference video frames or the acquired sequence of low light video frames, adjusting a level of image processing of the low light video frames based at least in part on the relative movement between the image acquisition assembly and the object, and generating a characteristic low light video output from a quantity of the low light video frames, wherein the quantity of the low light video frames is based on the adjusted level of image processing of the low light video frames.
Abstract:
A fluorescence imaging system for imaging an object, the system includes a white light provider that emits white light, an excitation light provider that emits excitation light in a plurality of excitation wavebands for causing the object to emit fluorescent light, a component that directs the white light and excitation light to the object and collects reflected white light and emitted fluorescent light from the object, a filter that blocks light in the excitation wavebands and transmits at least a portion of the reflected white light and fluorescent light, and an image sensor assembly that receives the transmitted reflected white light and the fluorescent light.
Abstract:
An imaging device may include a first illumination port to output first light having a first illumination distribution at a target to illuminate the target, a second illumination port to output second light having a second illumination distribution at the target to illuminate the target, the second illumination distribution being substantially similar to the first illumination distribution at the target, the second illumination port being spaced apart from the first illumination port, the first and second illumination distributions being simultaneously provided to the target and overlapping at the target. The illumination from the first and second ports may be matched to a same aspect ratio and field of view coverage as the imaging field of view.
Abstract:
A system includes a birefringent lens, and a polarization filter that transmits light of a first polarization output from the birefringent lens in a first direction and filters out light of a second polarization output from the birefringent lens along the first direction.
Abstract:
An optical system for use with a multi-channel wide field imaging system, the optical system including an objective lens, a dichroic element to split light into a first wavelength range and a second wavelength range, the dichroic element positioned to receive near parallel chief rays from the objective lens, a first channel lens system to receive light of the first wavelength range from the dichroic element; and a second channel lens system to receive light of the second wavelength range from the dichroic element.
Abstract:
Methods and systems are disclosed for extracting an image of a target fluorophore in a biological material, which involve inducing both autofluorescence of the biological material and fluorescence of the fluorophore, acquiring an image arising from both the autofluorescence of the biological material and the fluorophore, and an image arising only from the autofluorescence, subtracting the two images to produce an image representing only the fluorophore, wherein relative intensities of the excitation light used to induce the autofluorescence and the fluorescence are modulated prior to acquiring the images.