Abstract:
A technology for a user equipment (UE) that is operable to communicate in a device to device (D2D) network. A proximity detection request can be communicated to an evolved packet core (EPC). The proximity detection request can include a window parameter, an identification information of a second UE, and a proximity detection signal indicating whether the proximity detection request is for proximity detection of the second UE or for establishing a D2D connection with the second UE. A proximity alert message can be received from the EPC at the window parameter.
Abstract:
Embodiments for providing network-assisted to direct device discovery switch are generally described herein. In some embodiments, location information is received at an evolved packet core (EPC) from at least a first and a second user equipment (UE). A network-assisted device-to-device (D2D) request is received from the first UE for establishing a D2D wireless connection with the second UE. Proximity of the first UE and the second UE are monitored. Before detecting the second UE being in proximity to the first UE, direct discovery is determined to be more resource efficient than continuing to provide network-assisted D2D discovery. An indication is provided to the first UE and the second UE to perform direct discovery based on information provided in the indication.
Abstract:
A communication device may be provided. The communication device may include: a packet generator configured to generate a packet including data for a second communication device and a header including an identifier identifying a communication service for the data and a transmitter configured to transmit the packet via a flow restriction device to the second communication device.
Abstract:
An integrated WLAN/WWAN Radio Access Technology (RAT) architecture is described in which signaling used to control the integration of the WLAN/WWAN architecture is performed over the Radio Resource Control (RRC) plane. The integrated architecture may allow for User Equipment (UE) assistance in cell selection and traffic steering. In particular, UE-assisted RRC signaling is described for managing inter-RAT session transfers and secondary cell (SCell) selection.
Abstract:
With the proliferation of Machine-Type Communication (MTC), an excessive use of device trigger messages in a Long Term Evolution (LTE) network can have negative effects on user equipment (UE). These effect can include a shortening of UE battery life and/or excessive signalling caused by the frequent changing from an idle mode to an active mode. An MTC Interworking Function (MTC-IWF) can be configured to determine the status of a UE to which a device trigger message is intended. If the device trigger message is low priority and the UE is in an idle state, the MTC-IWF or Mobile Management Entity (MME)/Serving GPRS Support Node (SGSN)/Mobile Switching Center (MSC) can buffer the device trigger message.
Abstract:
Technology for setting up a Device to Device (D2D) communication channel between mobile wireless devices is disclosed. The technology includes identifying a first user equipment and a second user equipment located within a proximity; receiving network assisted proximity discovery information at one of the first UE and the second UE from an evolved packet core (EPC) operating on a third generation partnership practice (3GPP) wireless wide area network (WWAN); and setting up a device to device (D2D) communication between the first UE and the second UE based on the network assisted proximity discovery information received from the EPC.
Abstract:
A 3GPP monitoring architecture framework provides monitoring event configuration, detection, and reporting for machine-type and other mobile data applications using a machine type communication interworking function (MTC-IWF) that communicates monitoring event configuration, detection, and reporting messages through existing interfaces, such as Tsp, T4, and T5 interfaces.
Abstract:
A method and system for establishing a secure device-to-device connection between two mobile devices involves the use of a WiFi Direct (LTE Direct or other similar protocols) link paired with an IP Multimedia Subsystems (IMS) link. A device detects the presence of another device that it wishes to connect to. The devices negotiate a group owner, then authenticate each other using a variety of techniques, such as a centrally issued certificate. Thereafter, the devices derive keys to be used for communication, both over the WiFi Direct link and via the IMS link. A WiFi Direct Link may be paired with a Push to Talk over Cellular (PoC) link in order to couple together more than two devices. In such a connection, devices transmit to a group owner, which then sends multicast versions to the rest of the group devices.
Abstract:
In embodiments, apparatuses, methods, and storage media may be described for secure broadcast of discovery information of a discoverable user equipment (UE) in a device-to-device (D2D) network. Specifically, the discovery information may be encrypted with a first encryption key, and then the result of that encryption may be re-encrypted with a second encryption key. The dual-encrypted discovery information may then be broadcast in a cell. Upon reception of the dual-encrypted discovery information, a discovering UE with the appropriate decryption keys may decrypt the message to identify the discovery information. Based on the decrypted discovery information, the discovering UE may identify the presence of the discoverable UE.
Abstract:
Briefly, in accordance with one or more embodiments a mobility anchor point may operate in a distributed mobility anchor network. The mobility anchor point comprises a processor and a memory coupled to the processor, wherein the processor is configured by instructions in the memory to receive a request from a mobile node to connect with a base station, store one or more connection statistics regarding the connect request in a cache, send the one or more connection statistics to a mobility manager, and receive a message from the mobility manager indicating an identity of an assigned mobility anchor assigned to the mobile node.