Abstract:
Disclosed is a method of receiving a touch event by a portable terminal including a first display unit. The method includes recognizing connection of an accessory including a second display unit. The method also includes determining whether the second display unit is in a standby state for receiving a touch event. The method also includes activating a function corresponding to the second display unit when the second display unit is in the standby state. The method also includes, responsive to the second display unit receiving a selection input of a touch event, performing a function corresponding to the received touch event by the portable terminal. However, the present disclosure is not limited to the embodiment, and other embodiments can be made.
Abstract:
A liquid supply apparatus includes: a chamber configured to contain a liquid; an injector disposed on a first side of the chamber and configured to spray the liquid; and a piston extending from a second side of the chamber toward an interior of the chamber, wherein the chamber includes a first area configured to store the liquid; and a second area between the first area and the injector, and wherein the piston is configured to selectively seal or transfer the liquid between the first area and the second area, and press the liquid in the second area to expel the liquid from the liquid supply apparatus.
Abstract:
A sealing structure may include a lid including a first lid face, a second lid face opposite to the first lid face, and a fragile area between the first lid face and the second lid face, a cover including a first cover face facing the second lid face and covering the fragile area and a second cover face opposite to the first cover face, wherein a first distance between the second lid face and the first cover face is substantially equal to or less than a second distance between the first cover face and the second cover face, and a connector configured to connect the lid and the cover.
Abstract:
A heat exchanger is provided. The heat exchanger includes a target area that is a target for heat exchange; and a flow path structure. The flow path structure includes at least one inlet; at least one outlet; a first flow path connected to each of the at least one inlet and the at least one outlet, and extending along a first side of the target area; and a second flow path connected to each of the at least one inlet and the at least one outlet, and extending along a second side, different from the first side, of the target area.
Abstract:
A motion assistance apparatus includes a force transmitting frame configured to support a distal part of a user, a slider configured to slide in the force transmitting frame, and a driving frame connected to the slider and configured to slide with respect to a proximal part of the user.
Abstract:
A heat exchanger module includes a first heat exchanging body including at least one first through hole and a second heat exchanging body including at least one second through hole. The second heat exchanging body is configured to be coupled to the first heat exchanging body, and an accommodation hole is provided between the first heat exchanging body and the second heat exchanging body by the first heat exchanging body and the second heat exchanging body being coupled together.
Abstract:
A link assembly includes a main frame, a base link rotatably connected to the main frame, an input link rotatably connected to the main frame, and an output link at least 2-degree of freedom (DOF) rotatably connected to the main frame.
Abstract:
There is provided a method of transmitting and receiving user equipment management information and electronic device for performing the same. The electronic device includes a communication interface including a plurality of phase array antennas, a storage configured to store user equipment (UE) management information including information about at least one frequency band covered by each of the phase array antennas, and a controller configured to control to transmit the UE management information to a base station.
Abstract:
Driving modules, motion assistance apparatuses including at least one of the driving modules, and methods of controlling at least one of the motion assistance apparatuses may be provided. For example, a driving module including a driving source on one side of a user and configured to transmit power, an input side rotary body coupled to the driving source and configured to rotate, first and second decelerators configured to operate using the power respectively received from the driving source through the input side rotary body, and a first stopper and a second stopper configured to selectively enable or disable a transmission of the power between the input side rotary body and respective output terminals of the first and second decelerators may be provided.
Abstract:
A driving module including a driving source configured to generate power, a gear train including a decelerating gear set configured to receive driving power from the driving source and a ring gear attached to one side thereof, and a rotary joint including at least one planetary gear configured to rotate using power received from an output end of the decelerating gear set and to revolve along the ring gear is disclosed.