Abstract:
A method of cutting fins includes the following steps. A photomask including a snake-shape pattern is provided. A photoresist layer is formed over fins on a substrate. A photoresist pattern in the photoresist layer corresponding to the snake-shape pattern is formed by exposing and developing. The fins are cut by transferring the photoresist pattern and etching cut parts of the fins.
Abstract:
A method for fabricating semiconductor device includes the steps of: forming a first magnetic tunneling junction (MTJ) on a substrate; forming a first ultra low-k (ULK) dielectric layer on the first MTJ; performing a first etching process to remove part of the first ULK dielectric layer and forming a damaged layer on the first ULK dielectric layer; and forming a second ULK dielectric layer on the damaged layer.
Abstract:
A method for fabricating semiconductor device includes the steps of: forming a first magnetic tunneling junction (MTJ) on a substrate; forming a first ultra low-k (ULK) dielectric layer on the first MTJ; performing a first etching process to remove part of the first ULK dielectric layer and forming a damaged layer on the first ULK dielectric layer; and forming a second ULK dielectric layer on the damaged layer.
Abstract:
A method for fabricating semiconductor device is disclosed. A substrate having a first transistor on a first region, a second transistor on a second region, a trench isolation region, a resistor-forming region is provided. A first ILD layer covers the first region, the second region, and the resistor-forming region. A resistor material layer and a capping layer are formed over the first region, the second region, and the resistor-forming region. The capping layer and the resistor material layer are patterned to form a first hard mask pattern above the first and second regions and a second hard mask pattern above the resistor-forming region. The resistor material layer is isotropically etched. A second ILD layer is formed over the substrate. The second ILD layer and the first ILD layer are patterned with a mask and the first hard mask pattern to form a contact opening.
Abstract:
The present invention provides a method for forming an opening, including: first, a hard mask material layer is formed on a target layer, next, a tri-layer hard mask is formed on the hard mask material layer, where the tri-layer hard mask includes an bottom organic layer (ODL), a middle silicon-containing hard mask bottom anti-reflection coating (SHB) layer and a top photoresist layer, and an etching process is then performed, to remove parts of the tri-layer hard mask, parts of the hard mask material layer and parts of the target layer in sequence, so as to form at least one opening in the target layer, where during the step for removing parts of the hard mask material layer, a lateral etching rate of the hard mask material layer is smaller than a lateral etching rate of the ODL.
Abstract:
A method for fabricating semiconductor device includes the steps of: providing a substrate having a gate structure thereon and an interlayer dielectric (ILD) layer surrounding the gate structure; forming a sacrificial layer on the gate structure; forming a first contact plug in the sacrificial layer and the ILD layer; removing the sacrificial layer; and forming a first dielectric layer on the gate structure and the first contact plug.
Abstract:
A method of fabricating a semiconductor structure includes the following steps: forming a first interlayer dielectric on a substrate; forming a gate electrode on the substrate so that the periphery of the gate electrode is surrounded by the first interlayer dielectric; forming a patterned mask layer comprising at least a layer of organic material on the gate electrode; forming a conformal dielectric layer to conformally cover the layer of organic material; and forming a second interlayer dielectric to cover the conformal dielectric layer.
Abstract:
A method of fabricating a semiconductor structure includes the following steps: forming a first interlayer dielectric on a substrate; forming a gate electrode on the substrate so that the periphery of the gate electrode is surrounded by the first interlayer dielectric; forming a patterned mask layer comprising at least a layer of organic material on the gate electrode; forming a conformal dielectric layer to conformally cover the layer of organic material; and forming a second interlayer dielectric to cover the conformal dielectric layer.
Abstract:
The present invention provides a semiconductor device, including at least two gate structures, and each gate structure includes a gate, a spacer and a source/drain region, the source/drain region disposed on two sides of the gate. A first dielectric layer is disposed on the substrate and between two gate structures, where the first dielectric layer has a concave surface, and the first dielectric layer directly contacts the spacer. A floating spacer is disposed on the first dielectric layer and on a sidewall of the gate, and at least one contact plug is disposed on the source/drain region, where the contact plug directly contacts the floating spacer.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a metal gate thereon and a hard mask atop the metal gate; and performing a high-density plasma (HDP) process to form a cap layer on the hard mask and the substrate.