Abstract:
A vest for a human body has an air core coupled to a pulsator operable to subject the vest to pulses of air which applies and releases high frequency pressure forces to the body. The pulsator has two diaphragms connected to a brushless electric dc motor with rotary to reciprocating linear motion transmitting mechanisms comprising scotch yokes having anti-lash assemblies operable to generate air pulses in an air pulsing chamber. The diaphragms also increase the pressure in a manifold chamber. A check valve connects the manifold chamber with a pulsing chamber to allow pressurized air to flow from the manifold chamber into the pulsing chamber. An air flow control valve in communication with the manifold chamber is used to adjust the pressure of the air in the manifold and pulsing chambers. A programmable motor controller adjusts the duration of operation and speed of the motor to vary the operational time and frequency of the air pulses.
Abstract:
Systems, devices, and methods are disclosed herein for ultraviolet saunas. Systems include a plurality of walls of an enclosure, the enclosure being a sauna enclosure configured to accommodate a user. The systems further include a plurality of heating elements coupled to the plurality of walls, a plurality of emissive elements configured to generate ultraviolet (UV) light, and a controller coupled to the plurality of heating elements and the plurality of emissive elements. The controller includes one or more processors configured to generate activation properties for each of the plurality of heating elements and the plurality of emissive elements, activate at least one of the plurality of heating elements based on the plurality of activation properties, and activate the at least one emissive element based on the plurality of activation properties.
Abstract:
A skin cleanser includes a surface, such as a silicone surface, with at least one textured portion for transmitting vibrational tapping to the skin. The skin cleanser includes at least one oscillating motor for generating the tapping motion to the skin. The textured portion includes touch-points or a wave that transmit the tapping motion to skin in contact with the textured portions. The touch-points may include thicker and thinner formations of the touch-points to provide firmer or softer vibrations to the skin. The touch-points are within about 0.5 to 2.5 mm in diameter. One configuration includes multiple oscillating motors configured to provide different vibration frequencies at around 50-300 Hertz and operable simultaneously.
Abstract:
A device includes a first vibrational transducer and a second vibrational transducer. The first vibrational transducer has a first vibrating property. The second vibrotactile stimulator has a second vibrating property different than the first vibrating property. A collar may be configured to position the first vibrational transducer and the second vibrational transducer over a neck of a subject. A method for stimulating swallowing in a subject includes applying a first vibrotactile stimulation and applying a second vibrotactile stimulation to a throat area of the subject. The first vibrotactile stimulation has a first vibrating property and the second vibrotactile stimulation has a second vibrating property different than the first vibrating property. Example vibrating properties include vibrating frequency, vibrating frequency range, wave shape, continuousness, frequency phase, and direction of mechanical force.
Abstract:
A skin cleanser includes a surface, such as a silicone surface, with at least one textured portion for transmitting vibrational tapping to the skin. The skin cleanser includes at least one oscillating motor for generating the tapping motion to the skin. The textured portion includes touch-points or a wave that transmit the tapping motion to skin in contact with the textured portions. The touch-points may include thicker and thinner formations of the touch-points to provide firmer or softer vibrations to the skin. The touch-points are within about 0.5 to 2.5 mm in diameter. One configuration includes multiple oscillating motors configured to provide different vibration frequencies at around 50-300 Hertz and operable simultaneously.
Abstract:
A chest compression monitor for measuring the depth of chest compressions achieved during CPR. A displacement detector produces a displacement signal indicative of the displacement of the CPR recipient's chest toward the recipient's spine. A signaling mechanism provides chest compression indication signals prompting a CPR provider to provide a chest compression force at a desired depth and rate. The device is held to the dorsal surface of the hand during use and provides a display for feedback, which is readily visible to the CPR provider.
Abstract:
A compression therapy device may include a compression therapy appliance comprising a number of independently inflatable cells and a controller to control a flow of a pressurizing fluid into and out of each cell via a number of valves. The controller may direct the valves to inflate or deflate each cell in a sequence according to one or more compression therapy protocols. The compression therapy appliance may be placed on a portion of a patient's body to provide compression therapy according to one or more of the compression therapy protocols. The portion of the patient's body in contact with the compression therapy appliance may include a proximal end and a distal end. A compression therapy protocol may include alternating inflation and deflation steps of one or more cells placed in contact with the proximal end of the patient's body, thereby improving fluid flow into the proximal end of the patient.
Abstract:
A skin cleanser includes a surface, such as a silicone surface, with at least one textured portion for transmitting vibrational tapping to the skin. The skin cleanser includes at least one oscillating motor for generating the tapping motion to the skin. The textured portion includes touch-points or a wave that transmit the tapping motion to skin in contact with the textured portions. The touch-points may include thicker and thinner formations of the touch-points to provide firmer or softer vibrations to the skin. The touch-points are within about 0.5 to 2.5 mm in diameter. One configuration includes multiple oscillating motors configured to provide different vibration frequencies at around 50-300 Hertz and operable simultaneously.
Abstract:
A coin-sized implantable electroacupuncture (EA) device defines a stimulation paradigm, or stimulation regimen, that controls when EA stimulation pulses are applied to a selected acupoint, or other specified tissue location, to treat hypertension or nondipping. The stimulation regimen is applied when the patient is sleeping in order to minimize or mitigate the occurrence of nondipping or reverse dipping of the patient's blood pressure. In one embodiment, medical personnel, set a timing reference marker at the time of implant that defines how much time should elapse before a nighttime stimulation window opens that allows an EA stimulation session to be applied to the patient. In another embodiment, the patient sets the time when the nighttime stimulation window opens or when the EA stimulation session begins. Typically, an EA stimulation session is applied to the patient at a low duty cycle, e.g., only once a week during the nighttime.
Abstract:
Devices, systems and methods are described which control blood pressure and nervous system activity by stimulating baroreceptors. By selectively and controllably activating baroreceptors and/or nerves, the present disclosure reduces blood pressure and alters the sympathetic nervous system; thereby minimizing deleterious effects on the heart, vasculature and other organs and tissues. A baroreceptor activation device or other sensory activation device is positioned near a dermal bone to provide the treatment.