Abstract:
An electrostatic atomizing device for ejecting a mist of charged minute particles includes metal ion elution means for eluting sterilizing metal ions into a liquid to be electrostatically atomized. The metal ions are taken up by the charged minute particles, and are ejected into an environment space together with the charged minute particles, thereby eliciting a sterilizing effect. The elution amount of the metal ions is regulated by varying the voltage applied between two kinds of metal bodies.
Abstract:
An observation sample is prepared by immobilizing a nanomaterial on a substrate 10 by applying a voltage between a nanomaterial dispersion liquid 13, filled in an interior of an electrostatic spray nozzle 20, and the observation substrate 10 to electrostatically spray and dry the dispersion liquid 13 and electrostatically deposit the nanomaterial. With respect to the observation substrate 10, including a conductive grid portion 11 and a supporting film 12, a reference electrode 81 is disposed below the substrate 10 and a bias voltage of the same polarity as the electrostatic spraying voltage is applied to the grid portion 11 of the substrate 10 to adjust immobilization positions of the nanomaterial on the substrate 10. An observation sample, with which the nanomaterial is immobilized in a satisfactory state on the substrate, can thereby be prepared.
Abstract:
A process for forming an integrated multiplex electrospray includes forming multiple holes in a ring extractor substrate to create a ring extractor. A nozzle array having multiple nozzles each nozzle defining a central axis is provided. A spacer layer is bonded to either the ring extractor or the nozzle array to form a bonded stack. The bonded stack is then aligned with remaining layer to align each of the multiple nozzles with one of the plurality of holes to less than 10 microns from concentric and the spacer layer then bonded intermediate between the ring extractor and the nozzle array layer. The spacer layer is then etched to provide fluid communication between multiple nozzles and the multiple holes of the ring extractor and form the spacer.
Abstract:
An alternating current electrospray mass spectrometry device includes an electrospray device having at least one emitter providing a passageway for transmission of an analyte sample. At least one conductive element is in electrical communication with the at least one emitter. A power source generates an alternating current electric field to form a liquid cone at a tip of the emitter and ionizes the analyte sample present in the liquid cone. The frequency of the electric field entrains low mobility ions in the liquid cone. The AC electric field causes the emitter to discharge the liquid cone as a liquid aerosol drop, and a mass spectrometry device analyzes the ionized analyte sample to determine the composition of the contained analyte sample.
Abstract:
Disclosed is an electrostatic atomizer, which comprises a high-voltage applying section adapted to apply a high voltage between an atomizing electrode and a counter electrode so as to electrostatically atomize water supplied onto the atomizing electrode, wherein the high-voltage applying section is operable to set an absolute value of a voltage to be applied to the atomizing electrode smaller than an absolute value of a voltage to be applied to the counter electrode. This allows a physical object, such as an article stored in a mist-receiving space or an inner wall of a structural member defining the mist-receiving space to become less likely to be electrostatically charged, and makes it possible to avoid causing a problem about discomfort due to discharge of static charges when a user touches the physical object.
Abstract:
A discharge device comprises: a discharge electrode; an electrically insulating portion including an atomization room accommodating the discharge electrode; a water supplier configured to supply water to a surface of the discharge electrode; a high voltage supply configured to apply a high voltage to the discharge electrode to atomize the supplied water as charged water fine particles from a tip portion of the discharge electrode; and an electromagnetic shield provided at least around the atomization room, the electromagnetic shield having an opening to discharge the charged water fine particles.
Abstract:
An electrostatic atomizer, for use in a motor vehicle, includes a discharge electrode, a water supply unit for cooling the discharge electrode to generate water condensed on the discharge electrode, and a high voltage applying unit for applying a high voltage to the water on the discharge electrode to electrostatically atomize the water. The electrostatic atomizer is arranged in a ceiling of the motor vehicle. The electrostatic atomizer further includes an ejection portion provided in the ceiling of the motor vehicle for ejecting electrically-charged water particles generated by electrostatic atomization and an ejection direction changing unit provided in the ejection portion for changing an ejection direction of the electrically-charged water particles.
Abstract:
An electrostatic atomizer includes a discharge electrode, an opposite electrode positioned in front of the discharge electrode in a spaced-apart relationship therewith, a housing for defining an atomization chamber between the discharge electrode and the opposite electrode, a water supply unit for supplying water for atomization to the discharge electrode, and a voltage application unit for applying a voltage to the discharge electrode. The housing is provided with an air vent window through which the atomization chamber is opened laterally outwards. The opposite electrode is provided with a soundproof shield portion extended therefrom to cover, when seen from a front side of the opposite electrode, the space existing laterally outwards of the air vent window of the housing. The soundproof shield portion reflects rearwards a discharge sound generated in the atomization chamber.
Abstract:
A method for delivering an aerosol, especially an aromatic aerosol, comprising the steps of contacting a capillary wick, comprising an EHD comminution site, with a liquid source, whereby at least a portion of the liquid transports to the EHD comminution site; applying a voltage to the liquid within the capillary wick at a location spaced apart from the liquid source and proximate the EHD comminution site; and applying a ground reference at a location external to the EHD comminution site, wherein at least a portion of the liquid EHD comminutes to form a spray having a generally-consistent flowrate and a device therefor.
Abstract:
An electrostatic spraying device has a capability of confirming that the device is ready for making an electrostatic spraying of the liquid composition on a user's skin. The device includes a nozzle and a pump for dispensing the liquid composition out through the nozzle. An emitter electrode is disposed to electrostatically charge the liquid composition being dispensed for making the electrostatic spraying. The device is provided with a power switch and a selector for selection between a spraying mode and a dripping mode. In the dripping mode, the pump is alone actuated to dispense the liquid composition absent electrostatic charge. In the spraying mode, both of the pump and the emitter electrode are activated to make the electrostatic spraying. Thus, the user can be easy to drip the liquid composition by simply manipulating the selector prior to initiating the electrostatic spraying.