Abstract:
Method and apparatus for depositing material in hard to reach locations of a workpiece. An elongated member is inserted in an opening. The member transports a laser beam from a fiber laser and material, preferably in powder form, to the desired location. The material is deposited on the workpiece and the laser beam contacts the material. The method and apparatus may be used to manufacture a part or to repair an existing part.
Abstract:
A laser cladding device for applying a coating to a part comprising a laser which can generate laser light, which is adapted to heat the coating and the part, a main body defining a laser light channel adapted to transmit the laser light to the part, a coating channel adapted to transmit the coating to the part, and a vacuum channel and a nozzle having an exit. The nozzle comprises a delivery port at one end of the laser light channel, a coating port at one end of the coating channel, and a vacuum port at one end of the vacuum channel, wherein the vacuum port is positioned generally adjacent the delivery port In operation the vacuum port draws a vacuum, pulling the coating towards the part.
Abstract:
A powder delivery system for a laser-based additive manufacturing process includes a hopper adapted to contain a powder and continuously feed the powder through an output of the hopper, a rotatable disk having a top surface that is substantially flat, the top surface adapted to receive the powder continuously fed through the output of the hopper, the top surface being disposed below the output of the hopper by a prescribed gap, and a vacuum powder removal device operable to remove the powder from the top surface via a vacuum.
Abstract:
A droplet application method for discharging and applying a plurality of droplets onto a substrate, comprises repetition of: providing light energy to a droplet that has been applied; and applying another droplet onto the droplet to which the light energy has been provided.
Abstract:
A system and method for directing metal or ceramic particles toward a substrate (18) in a vacuum chamber includes a powder hopper (11), an enclosure (12) containing multiple differentially pumped vacuum chambers (19), a charging lamp (13), a tube (14), multiple charging and heating diodes 15, and an electromagnetic field generating device (EFGD) (17). The hopper (11) holds metal or ceramic particles, the chambers (19) propel the particles through the tube (14) towards substrate (18) positioned close to the tube, charging lamp (13) charges the particles, diodes (15) are used to heat the particles, and the EFGD (17) controls the direction of the particles propelled out of the tube.
Abstract:
The present invention is a process and apparatus for producing nano-scale particles using the interaction between a laser beam and a liquid precursor solution. There are two embodiments. The first embodiment includes the use of a solid substrate during the laser-liquid interaction. In this embodiment the laser beam is directed at the solid substrate which is immersed in the liquid precursor solution and rotating. The second embodiment includes the use of a plasma during the laser-liquid interaction. In the second embodiment, a mixture of a liquid precursor and a carrier gas is injected into a laser beam. Injection of the mixture can be performed either perpendicular or parallel to the laser beam. The apparatus for injecting the liquid precursor and carrier gas into the laser beam includes a plasma nozzle designed to allow the laser beam to enter the plasma nozzle so that the laser beam may irradiate what is flowing through the plasma nozzle to create a plasma flow. The carrier gas allows for the formation of a plasma by its interaction with the laser beam. The liquid precursor is allowed to atomize into fine droplets. These fine droplets are exposed to the laser beam along with the plasma. The photon energy from laser beam and plasma energy induce the breaking of the molecular bond of the liquid precursor which results in the formation of ultra-fine elemental powders.
Abstract:
A nozzle for application of an extrudable material to a substrate optically couples an electromagnetic beam to the extrudable material. The nozzle forms a flow channel with a window at one end. The extrudable material is admitted to the flow channel such that it flows across the bottom surface of the window and through the flow channel. The nozzle is removably held in a head to permit replacement of the nozzle when worn or for installation of a nozzle having different characteristics for a different application.
Abstract:
A spraying material is fed to and melted in a high energy density zone formed by converging a laser beam therein with a converging lens or a mirror, and the molten spraying material is rendered into particles by jetting a carrier gas stream such that the axis thereof crosses the axis of the laser beam in the high energy density zone to blow the particles of the molten spraying material against a base surface disposed to be normal to the carrier gas stream axis beyond the high energy density zone so as to form a film of the spraying material on the surface.
Abstract:
A metallic coating is applied to a metallic substrate by directing a laser beam on to the substrate and simultaneously directing a gas stream containing entrained particles of the coating material on to the area of laser impingement on the substrate. The particles are melted by the laser beam to form a pool of molten coating metal. Relative movement is effected between the laser beam and substrate so that a pool of molten coating metal traverses the substrate to form a solidified metallic coating which is fused to the metallic substrate.
Abstract:
A plasma spray gun having an arc space within the gun housing for heating and ionizing an inert gas propelled therethrough includes an external, adjustable powder feed conduit so that the powder may be applied to the flame of the gun after it has left the gun nozzle. The plasma gun also utilizes a concave reflector attached to the gun to reflect the infrared radiation and direct it to a limited area on the substrate where most of radiant heat is absorbed.