Abstract:
A method of manufacturing and mass-producing a seamless heat-resistant resinous tube with a uniform tube wall thickness and circumference, which includes the steps of coating the precursor solution of a tube material to the surface of a core at a thickness greater than the tube wall thickness; passing a metallic die having a wider inside diameter than the diameter of the core along the outside of the core by utilizing the resistant force of the precursor solution without restricting the metallic die or the core, thus forming a tube around the core; treating the tube around the core to give it strength as a tube; and separating the tube from the core.
Abstract:
An open-ended cylindrical housing (50) with a slot (52) extending along one side contains within its bore first and second roller guides (54, 56) each having a longitudinal extending V-shaped groove (58) in an outer surface. The housing and included roller guides are located as a unit within an adhesive recovery tube (62) having a slot (66) along one side. In use, a fiber (18) with adhesive on its surface moves along the V-shaped grooves. Adjustment of the V-shaped groove aperture existing at the facing roller guide ends is accomplished by relative roller guide rotation.
Abstract:
A novel method and apparatus for manufacturing magnet wire in a continuous process by which coatings of a flowable resin material may be applied concentrically to a moving elongated filament in thicknesses of about 16 mils or less. The filament can be a bare copper or aluminum conductor having round or rectangular configuration or an insulated conductor upon which a top or an intermediate coat of material is desirably applied. Coatings of one and two mils also can be applied by the method of the invention. By the method and apparatus of the invention, magnet wire can be manufactured by continuously drawing the wire to size, annealing the wire, if necessary, insulating the wire with one or more coats of flowable resin material, curing the resin material, if necessary, hardening the resin material, and spooling the wire for shipment, without interruption at speeds limited only by the filament pay-off and take-up devices used. The apparatus of the invention utilizes the flowable resin material to center the filament in a die, the size of the die controls the thickness of the coat to be applied. In the apparatus of the invention, only the resin material being applied to the filament is in contact with the filament. Thus, the mechanical wear normally associated with centering dies used in extrusion process and like devices is completely eliminated. Further, the apparatus and method of the invention can be used to apply coats several times thinner than is possible with conventional extrusion apparatus and of materials different than those conventionally extruded onto filaments. In specific embodiments using heat softenable materials or melts, curing is no longer required; and thus, the need for curing, catalytic burners and the like as well as all concerns regarding atmospheric pollution are eliminated. The coated filaments and magnet wire made by the apparatus and in accordance with the method of the invention have coatings which are surprisingly concentric and continuous when compared to magnet wire made by conventional methods and apparatus.
Abstract:
According to one embodiment, a system for manufacturing a fully impregnated thermoplastic prepreg includes a mechanism for moving a fabric or mat and a drying mechanism that removes residual moisture from at least one surface of the fabric or mat. The system also includes a resin application mechanism that applies a reactive resin to the fabric or mat and a press mechanism that presses the coated fabric or mat to ensure that the resin fully saturates the fabric or mat. The system further includes a curing oven through which the coated fabric or mat is moved to polymerize the resin and thereby form a thermoplastic polymer so that upon exiting the oven, the fabric or mat is fully impregnated with the thermoplastic polymer. During at least a portion of the process, humidity in the vicinity of the coated fabric or mat is maintained at substantially zero.
Abstract:
According to one embodiment, a system for manufacturing a fully impregnated thermoplastic prepreg includes a mechanism for moving a fabric or mat and a drying mechanism that removes residual moisture from at least one surface of the fabric or mat. The system also includes a resin application mechanism that applies a reactive resin to the fabric or mat and a press mechanism that presses the coated fabric or mat to ensure that the resin fully saturates the fabric or mat. The system further includes a curing oven through which the coated fabric or mat is moved to polymerize the resin and thereby form a thermoplastic polymer so that upon exiting the oven, the fabric or mat is fully impregnated with the thermoplastic polymer. During at least a portion of the process, humidity in the vicinity of the coated fabric or mat is maintained at substantially zero.
Abstract:
The invention relates to a device and a method for hot-dip coating a metal strip with a metal covering, wherein the metal strip is directed continuously through a melt bath, wherein the thickness of the metal covering present on the metal strip when it leaves the melt bath is adjusted by means of a scraping device, and wherein slag which is present on the melt bath is driven away from the metal strip leaving the melt bath by means of a gas flow. To prevent slag from coming into contact with the metal strip leaving the melt bath, the invention drives away the slag from the metal strip by means of at least one nozzle which is arranged in close proximity to the metal strip, that a gas flow which extends over the width of the metal strip is directed onto the surface of the melt bath.
Abstract:
Processes and devices useful in the application of coatings (14) to the interior of tubes (10) are described. Such processes (40, 400) may include applying a layer (20) of coating fluid (18) to the internal surface (16) of the tube (10) and passing a smoothing member (22) through the tube (10) at a distance from the internal surface (16). The viscosity of the coating fluid (18) may be selected so that the layer (20) of coating fluid (18) has a thickness substantially equal to or in excess of a predetermined wet film thickness (Twf) correlated to a desired final thickness (Tf) of the coating (14). The distance between the smoothing member (22) and the internal surface (16) may substantially correspond to the predetermined wet film thickness (Twf). The smoothing member (22) may smooth the coating fluid (18) and remove coating fluid (18) in excess of the wet film thickness (Twf) from the internal surface (16).