Abstract:
Systems and methods for treating water are provided. The systems and methods may utilize an electrochemical water treatment device comprising ion exchange membranes. In certain systems and methods, a concentrate stream and a dilution stream may be in fluid communication with ion exchange membranes. The ion exchange membranes may be configured to provide a ratio of a pH of the concentrate stream and a pH of the dilution stream to be less than about 1.0. In some instances, the LSI of the concentrate stream may be less than or about 1.0. In certain instances, the electrochemical water treatment device does not require a reverse polarity cycle.
Abstract:
The present invention relates to an improved electrodeionization (EDI) module and apparatus adapted to transfer ions present in a liquid under the influence of an electric field.
Abstract:
An electrical purification apparatus and methods of making same are disclosed. The electrical purification apparatus may provide for increases in operation efficiencies, for example, with respect to current efficiencies and membrane utilization.
Abstract:
Provided are a deionization flexible composite electrode, a method of manufacturing the deionization flexible composite electrode, and a deionization apparatus using the same. The deionization flexible composite electrode includes: a porous substrate having fine pores; and a conductive film portion that is formed on one surface or both surfaces of the porous substrate. The method of manufacturing a deionization flexible composite electrode comprises: preparing a porous substrate having fine pores; and depositing a conductive material in the porous substrate to thus form a conductive film portion on one surface or both surfaces of the porous substrate.
Abstract:
It is an object of the present invention to provide an electrical deionization apparatus having a novel constitution with excellent deionization efficiency. As means for solving this problem, according to one embodiment of the present invention, there is provided an electrical deionization apparatus having deionization compartments, concentration compartments and electrode compartments partitioned from one another by a plurality of ion exchange membranes between a cathode and an anode, wherein, in the deionization compartments and/or the concentration compartments and/or the electrode compartments, at least one of anion exchange fibrous material layers and cation exchange fibrous material layers are disposed on one another intersecting a water-passing direction.
Abstract:
Some embodiments described herein generally relate to apparatus and methods for performing polarized electrodialysis, which may be used for desalination, purification and concentration. Such apparatus may include, for example, a pair of electrodes, a plurality of ion exchange membranes disposed between the pair of electrodes and a reservoir between each of the electrodes and the ion exchange membranes. The ion exchange membranes may include cation exchange membranes alternating with anion exchange membranes. A voltage may be applied between the pair of electrodes to generate concentration polarization wherein concentration of ions near the surface of one of at least one of the cation and anion exchange membranes is lower than a concentration of ions in the sample solution. The solution with lower ion concentration may be collected to form a desalinated stream by the apparatus. The apparatus and methods may also be able to remove or concentrate less mobile, weakly charged or bigger matters which cannot be purified by conventional electrodialysis.
Abstract:
Apparatuses for generating electrical power and/or treating water desalinating salt water are described, and may include a top manifold comprising one or more inlets, a bottom manifold comprising one or more outlets, a casing connecting the top manifold and the bottom manifold to define an internal space, and at least one electrode set disposed in the internal space. The electrode set may include a silver chloride cathode in fluid communication with a first fluid container including an aqueous solution, such as diluted sodium chloride solution, and a silver anode in fluid communication with a second fluid container including another aqueous solution, e.g., a higher concentration sodium chloride solution. The electrode set also may include a membrane that allows chloride and sodium ions to pass therethrough, and a connector electrically connecting the cathode to the anode to form an electrical circuit.
Abstract:
A mesoporous carbon composite material includes mesoporous carbon, metal nanoparticles distributed on the mesoporous carbon, and phosphorus on the mesoporous carbon. An electronic device includes an electrode including the mesoporous carbon composite material. A method of producing a mesoporous carbon composite metal includes impregnating mesoporous silica with a carbon precursor solution, forming a carbon silica composite by heat-treating the mesoporous silica impregnated with the carbon precursor solution, and removing silica from the carbon silica composite. The carbon precursor solution includes a phosphorous-containing carbon precursor, a metal-containing salt, a solvent, and optionally a carbonization catalyst.
Abstract:
An electrical purification apparatus and methods of making same are disclosed. The electrical purification apparatus may provide for increases in operation efficiencies, for example, with respect to current efficiencies and membrane utilization.
Abstract:
The present disclosure provides a liquid treatment device, a liquid treatment method, and a plasma treatment liquid each capable of efficiently generating plasma and treating a liquid in a short time period. A liquid treatment device according to the present disclosure includes a first electrode, a second electrode disposed in a liquid to be treated, an insulator disposed around the first electrode with a space between the first electrode and the insulator, the insulator has an opening portion in a position in contact with the liquid to be treated, a power supply that applies voltage between the first electrode and the second electrode, and a supply device supplying a liquid to the space before the power source applies the voltage.