Abstract:
An apparatus and method for simultaneously removing materials from fluids without the need for added chemicals, and without the formation of toxic byproducts, by high-density plasma reaction chemistry is described. Applications to removal of contaminants, such as pesticides, organics, PPCPs, and pathogens, as examples, from water are discussed. Changes in the quality of the raw water are not expected to adversely affect the decontamination process.
Abstract:
A method of reducing naphthenic acids in a wastewater stream. The method begins by processing the wastewater stream to produce a treated wastewater stream with an electrocoagulation device to induce flocculation of the naphthenic acids. The reduction of the naphthenic acids in the wastewater stream occurs from separating flocculated naphthenic acids to produce the treated wastewater stream.
Abstract:
A photoelectrocatalytic oxidizing device having a photoanode being constructed from an anatase or rutile polymorph of Ti as the support electrode. Alternatively, the photoanode is a composite electrode comprising an anatase or rutile polymorph of Ti as the support electrode coated with a thin film of sintered nanoporous TiO2 derived from a stable, dispersed suspension of nanoparticulate TiO2. The device being useful for removing ammonia, protein and other contaminants from water in aquariums and aquacultures thereof. The device being cylindrical in shape and having a flow-through configuration. The method being directed at reducing the amount and concentration of ammonia in an aquarium or aquaculture system comprising providing an aqueous solution comprising water, NH3, NH4+ and 1 ppb to 200 g/L NaCl, and, photoelectrocatalytically oxidizing the NH3 and NH4+ to produce N2 gas, NO2− and NO3−, wherein the NH3 and NH4+ are oxidized on the surface of a photoanode constructed from an anatase polymorph of Ti, a rutile polymorph of Ti, or a nanoporous film of TiO2.
Abstract:
An electrolytic device and method for generating a disinfecting solution that utilizes an electrical circuit and storage battery. The electrical circuit preferably conditions the power received from a variety of power sources to charge the storage battery and conditions the power stored in the storage battery to provide the appropriate power to maximize the disinfection efficacy of the disinfecting solution. The device may incorporate one or more other devices such as an LED, an electrical power takeoff, a clock, a compass, a transmitter device, a receiver device, a position locating device, a direction indicating device, and/or a camera.
Abstract:
A method is provided, which includes applying electrochemically activated acid and alkaline water to a surface as a pre-spray, allowing the electrochemically activated acid and alkaline water to remain on the surface for a dwell time, and after the dwell time, performing a cleaning operation on an area of the surface to which the pre-spray was applied.
Abstract:
The object of the invention is to provide a method for cleaning circulation water, which reduces the cost of operation and maintenance as much as possible, without a cumbersome cleaning operation such as by detaching electrode plates from an electrolysis cleaning tank and removing scale from inside the tank, and to provide a device used in this method. Accordingly, the present invention provides a method for cleaning circulation water, comprising the steps of flowing circulation water to be cleaned between electrode plates placed in a face-to-face manner between one another; and applying DC voltage between the electrode plates, allowing one or more metal ions contained in the circulation water to be precipitated onto the negative electrode plates by electrolysis, to clean the circulation water, wherein the electrode plates used are made of titanium plates, and wherein a desired amount of current flows, while an anodized oxide coating formed on the surface of the positive electrode plates is compulsively subject to dielectric breakdown by increasing the voltage applied to the anodized oxide coating. FIG. 1 is a representative drawing.
Abstract:
An apparatus for treating water contaminated with metal sulfates and sulfuric acid such as acid mine drainage (AMD) which in part recycles high pH effluent from later steps in the process back to the earlier steps of the process. The recycled high pH effluent added with magnesium hydroxide to the entering AMD generates precipitates separable from the stream to leave sulfate ladened water. A tangential filtering process is used to separate the sulfate ladened water into one stream of pure water and a second stream containing sulfate. One portion of the second stream is treated with ammonia to yield a cake of ammonia sulfate and aqueous ammonia. Ca(OH)2 is added to another portion of the second stream to produce calcium sulfate cake and the high pH effluent that is recycled back to the first step in the cycle.
Abstract:
The present invention provides an apparatus suitable for use in the treatment of liquid 31, comprising a high voltage electric discharge device 8 with spaced apart first second electrodes 24,25. The discharge device has electrical power supply control means 13 for applying a series of high voltage pulses across said first and second electrodes 24,25 so as to produce an extended area electrical discharge in an electric discharge zone 37 extending between said first and second electrodes. The apparatus also has a gas delivery means 14-18,29 for feeding a series of bubbles 36 of gas into the liquid in said electric discharge zone. The present invention also provides methods of producing an electrical discharge in a liquid and of decontaminating water and other liquids using the apparatus of the invention.
Abstract:
The present invention comprises an insertion type electrode adapted to operate at modulated high voltages by use of a thin layer polyer as a dielectric.
Abstract:
An apparatus and method for removing contaminating metal ions and sulfate ions from acidic aqueous solution such as waste mine water which features passing the solution between pairs of electrodes, each pair of electrodes impressed with a voltage selected according to specific ion species and then adding chemical agents to raise the pH and form precipitates of the metal and sulfate ions. A magnetic field is applied during at least the first mixing step. The precipitate is then separated from the water with settling and filtering steps. The clarified solution is treated by reverse osmosis to concentrate the ammonium.