Abstract:
An optical sensor that includes a photonic crystal fiber (PCF) and an optical coupler. The PCF includes a hollow core with a first diameter (Dc), an inner cladding section, and an outer layer surrounding the inner cladding section. The inner cladding section includes a cladding material and a plurality of spaced apart circular-shaped channels disposed in the cladding material surrounding the hollow core. The cladding material includes at least one of glass, ceramic, and glass-ceramic. Each spaced apart circular-shaped channel has substantially the same size and an average diameter (d). A first end of the PCF is in optical communication with a light source and a second end of the PCF is in optical communication with the optical coupler.
Abstract:
A method for producing a solid body of glass is described. The method comprises providing a polymerisable composition, curing the polymerisable composition to obtain a cured body, subjecting the cured body to thermal debinding to substantially remove the organic components in the cured body, and subjecting the cured body to sintering to obtain a solid body of silica glass. The polymerisable composition one or more at least partially organic polymerisable compound(s) which form a liquid composition at operating temperature and a solid source of silica as colloidal silica particles or silica glass micro-/nanoparticles dispersed in the liquid composition. The one or more at least partially organic polymerisable compounds comprises at least one organosilicon compound as a second source of silica that is liquid or solubilisable in the liquid composition at operating temperature to thereby increase the silica loading of the cured body prior to sintering. Compositions and methods for producing solid glass objects by additive manufacturing are also described.
Abstract:
A Photonic Crystal Fiber (PCF) a method of its production and a supercontinuum light source comprising such PCF. The PCF has a longitudinal axis and includes a core extending along the length of said longitudinal axis and a cladding region surrounding the core. At least the cladding region includes a plurality of microstructures in the form of inclusions extending along the longitudinal axis of the PCF in at least a microstructured length section. In at least a degradation resistant length section of the microstructured length section the PCF includes hydrogen and/or deuterium. In at least the degradation resistant length section the PCF further includes a main coating surrounding the cladding region, which main coating is hermetic for the hydrogen and/or deuterium at a temperature below Th, wherein Th is at least about 50° C., preferably 50° C.
Abstract:
A quartz glass container is shown and described herein. The quartz glass container exhibits a low concentration of surface defects on an inner surface of the container. In aspects hereof, the container may have a surface defect density of 50 or fewer surface defects per square centimeter within a 1 cm band centered 1 cm from the base of the container.
Abstract:
A manufacturing method for an optical fiber, includes: drawing, while heating in a heating furnace, a lower end of an optical fiber preform that is to be an optical fiber having a core consisting of silica glass containing a rare earth element compound. The heating furnace has a temperature profile in which a temperature of the heating furnace increases to a maximum temperature Tmax and then decreases from an upstream side of the heating furnace toward a downstream side of the heating furnace. The temperature profile has a changing point at which the temperature decreases more steeply on the downstream side from a position where the maximum temperature Tmax is reached. At the maximum temperature, a temperature of the silica glass is higher than or equal to a glass transition temperature and the silica glass is in a single phase.
Abstract:
An optical fiber with low fictive temperature along with a system and method for making the optical fiber are provided. The system includes a reheating stage that heats the fiber along the process pathway to a temperature sufficient to lower the fictive temperature of the fiber by relaxing the glass structure and/or driving the glass toward a more nearly equilibrium state. The fiber is drawn from a preform, conveyed along a process pathway, cooled and subsequently reheated to increase the time of exposure of the fiber to temperatures conducive to lowering the fictive temperature of the fiber. The process pathway may include multiple reheating stages as well as one or more fiber-turning devices.
Abstract:
An optical fiber with low fictive temperature along with a system and method for making the optical fiber are provided. The system includes a reheating stage that heats the fiber along the process pathway to a temperature sufficient to lower the fictive temperature of the fiber by relaxing the glass structure and/or driving the glass toward a more nearly equilibrium state. The fiber is drawn from a preform, conveyed along a process pathway, cooled and subsequently reheated to increase the time of exposure of the fiber to temperatures conducive to lowering the fictive temperature of the fiber. The process pathway may include multiple reheating stages as well as one or more fiber-turning devices.
Abstract:
The embodiments disclosed herein seek to ameliorate high costs associated with the use of ultra-pure silica by using a lower-cost starting material and purifying the lower-cost starting material to an acceptable level of purity during the preform manufacturing process. In one embodiment, a nucleating compound is coated on a thin-walled silica tube, which upon cooling, forms cristobalite allowing for easy removal of the thin-walled silica tube.
Abstract:
A porous glass base material sintering method comprising measuring a feeding speed Vf of a porous glass base material and a movement speed Vw of a bottom end of the glass base material; performing a sintering treatment of the porous glass base material presetting, for each feeding distance L of the porous glass base material, a greater-than-1 target value αS (L) of an elongation rate in a straight body portion of the porous glass base material calculated based on a ratio Vw/Vf, and controlling at least one of a temperature of the heating furnace and a feeding speed of the porous glass base material such that a measured value α of the elongation rate of the porous glass base material matches with the target value αS (L).
Abstract:
The production of quartz glass granules comprises the granulation of pyrogenically produced silicic acid and the formation of a SiO2 granulate (9), the drying and cleaning of the SiO2 granulate (9) by heating in an atmosphere containing halogen, and the vitrification of the SiO2 granulate (9) under a treatment gas which contains at least 30% by volume of helium and/or hydrogen. This process is time-consuming and expensive. In order to provide a method which, starting from a porous SiO2 granulate (9), allows the cost-effective production of dense, synthetic quartz glass granules suitable for melting bubble-free components of quartz glass, the invention proposes that the cleaning and vitrification of the SiO2 granulate (9) and a post-treatment of the vitrified quartz glass granules are carried out in each case in a rotary tube (6) of a rotary kiln (1), said rotary tube rotating about a central axis (7), wherein the rotary tube (6) comprises an inner wall made of a ceramic material during vitrification, and wherein the vitrified quartz glass granules are subjected to a post-treatment during a treatment period of at least 10 minutes in an atmosphere which contains less than 20% of helium or hydrogen at a treatment temperature of 300° C. or more.