Abstract:
Adhesive compositions containing a base compound or resin and an epoxy compound or resin with allyl or vinyl functionality show enhanced adhesive strength. The compositions can be used in microelectronic applications.
Abstract:
Pressure sensitive adhesives are provided which possess high load bearing capabilities at elevated temperatures. The adhesives are prepared by polymerization of a syrup polymer composition having a first solute polymer having reactive, pendant functional groups, a second component having co-reactive functional groups, and a monomer mixture. The syrup polymer contains reactive electrophilic or nucleophilic functional groups that can subsequently crosslink by reaction with a second component having co-reactive functional groups.
Abstract:
A bioadhesive composition formed by polymerising a homogeneous aqueous reaction mixture comprising from about 5% to about 50%, by weight of the reaction mixture, of at least one ionic water soluble monomer, from about 10% to about 50%, by weight of the reaction mixture, of at least one plasticiser (other than water), up to about 50%, by weight of the reaction mixture, of at least one non ionic water soluble monomer, up to about 40%, by weight of the reaction mixture, of water, optionally as well as up to about 10%, by weight of the reaction mixture, of at least one surfactant and from about 1% to about 30%, by weight of the reaction mixture, of at least one hydrophobic monomer and/or polymer. An electrolyte may be present, to enhance electrical conductivity, e.g. for use in biomedical electrodes.
Abstract:
A temporary protective film comprising a support film and an adhesive layer provided on one surface or both surfaces of the support film is disclosed. The coefficient of linear expansion at 30° C. to 200° C. of the temporary protective film may be greater than or equal to 16 ppm/° C. and less than or equal to 20 ppm/° C. in at least one in-plane direction of the temporary protective film.
Abstract:
A method is provided for forming an adhered membrane roof system that meets Factory Mutual (FM) 4470/4474 standards for wind uplift. The method comprises applying a bond adhesive to a substrate on a roof to form an adhesive layer and applying a membrane directly to the adhesive layer. The bond adhesive includes a moisture-curable polymer.
Abstract:
A support film for a tape material, includes a film-shaped support formed of polyurethane; and a barrier layer containing an aromatic isocyanate-based polyurethane and a layered inorganic compound and formed on one surface of the support.
Abstract:
A double-sided tape including: a first adhesive layer including about 100 parts by weight of an acrylic polymer, about 1 to about 2 parts by weight of a silane coupling agent, and about 0.1 to about 0.18 parts by weight of carbon black; a foamed polymer layer disposed on the first adhesive layer, including a urethane foam; an interlayer polymer layer disposed on the foamed polymer layer, including a polyolefin (PO), polyethylene terephthalate (PET), a polyester, or a combination thereof; and a second adhesive layer disposed on the interlayer polymer layer, including about 100 parts by weight of an acrylic polymer, about 1 to about 2 parts by weight of a silane coupling agent, and about 0.1 to about 0.18 parts by weight of carbon black, wherein an overall thickness of the double-sided tape is in a range of about 0.4 millimeters to about 1.3 millimeters.
Abstract:
Techniques are disclosed for producing multilayered composites of adhesive nanofiber composites. Specifically, one or more sheets of highly aligned nanofibers are partially embedded in an adhesive such that at least a portion of the nanofiber sheet is free from adhesive and is available to conduct current with adjacent electrical features. In some example embodiments, the adhesive nanofiber composites are metallized with a conductive metal and in these and other embodiments, the adhesive nanofiber composites may also be stretchable.
Abstract:
The object of the present invention is to provide a novel adhesive. The characteristics of the present invention is an adhesive comprising an organic polymer having a main chain formed by a water-soluble polymer unit, and a hydrophilic organic group and a self-assembling group bonded to the water-soluble polymer unit; and a curing agent.
Abstract:
An adhesive composition, capable of achieving excellent life performance and a wide margin for mounting, includes a cationic polymerizable compound, an aluminum chelate/silanol-based curing catalyst, and a nucleophilic compound containing a sulfur atom having an unshared electron pair. The nucleophilic compound is a thiol compound or an episulfide compound. The aluminum chelate/silanol-based curing catalyst includes an aluminum chelate curing agent, and a silanol compound or a silane coupling agent. The aluminum chelate curing agent constitutes a latent aluminum chelate curing agent carried by a porous resin obtained through interfacial polymerization of a polyfunctional isocyanate compound.