Abstract:
Advantage is taken of the fact that in optical navigation devices it is possible to measure the intensity of light impacting the pixel array of photo-diodes. Based upon such an intensity determination, a feedback signal is used to reduce the intensity of the light to a point where it is equal to or less than a predetermined value. In one embodiment, the discharge rate of a capacitive power supply is used to determine the intensity of the light source impacting the pixels. When the discharge rate is faster than a given amount the inference is that the light intensity is too great and power is reduced to the light source to reduce the intensity.
Abstract:
Two embodiments of a multilayered low energy optical power limiter device are disclosed which protect thermal sensors against laser threats in the far infrared spectral region. One limiter device has multiple layers in order from the incoming radiation side an antireflective coating layer, a window substrate layer, a layer of chalcogenide, a germanium substrate layer, a layer of vanadium dioxide (VO2), a window substrate, and an antireflective coating layer. As incoming radiation energy increases, the VO2 layer will heat up and change from an unswitched transmissive state to a switched reflective state. The excessive energy past the switched state is reflected back through the germanium and chalcogenide layer and is absorbed quickly therein so that these layers also heat up quickly and are switched almost simultaneously with the VO2 layer to provide high optical density at a low switching threshold temperature with high damage threshold. The second embodiment further adds a second VO2 layer between the input antireflective coating layer and window substrate layers to reflect high radiation energy immediately.
Abstract:
A system and method for errant laser beam detection are provided for effectively detecting small coating failures in a cost effective and robust manner. In one embodiment, a detection system includes a continuity circuit on a printed circuit board (PCB) having metal (e.g., copper) traces which are designed to burn through if an errant beam strikes them. The traces are sized and patterned appropriately to sense a minimum subaperture size.
Abstract:
A beam delivery unit and method of delivering a laser beam from a lasr light source for excimer or molecular fluorine gas discharge laser systems in the DUV and smaller wavelengths is disclosed, which may comprise: a beam delivery enclosure defining an output laser light pulse beam delivery path from an output of a gas discharge laser to an input of a working apparatus employing the light contained in the output laser light pulse beam; a purge mechanism operatively connected to the beam delivery enclosure; an in-situ beam parameter monitor and adjustment mechanism within the enclosure, comprising a retractable beam redirecting optic; a beam analysis mechanism external to the enclosure; and, a retraction mechanism within the enclosure and operable from outside the enclosure and operative to move the retractable beam redirecting optic from a retracted position out of the beam path to an operative position in the beam path. The BDU may also include a beam attenuator unit contained within the enclosure adjustably mounted within the enclosure for positioning within the beam delivery path. The BDU may have at least two enclosure isolation mechanisms comprising a first enclosure isolation mechanism on a first side of the enclosure from the at least one optic module and a second enclosure isolation mechanism on a second side of the enclosure from the at least one optic module, each respective enclosure isolation mechanism comprising a flapper valve having a metal to metal seating mechanism and a locking pin assembly. A precision offset ratchet driver operative to manipulate actuator mechanisms in difficult to reach locations may be provided. An external kinematic alignment tool may be provided. A method of contamination control for a BDU is disclosed comprising selection of allowable materials and fabrication processes.
Abstract:
A laser countermeasure system uses a fluence trigger along an optical path between an entrance and a detector at an output. The fluence trigger detects laser radiation and blocks the passage thereof beyond the trigger. A shutter at the front end can be operated in response to detection by the trigger. A threat analyzer also receives radiation and automatically breaks the radiation into spectral components for correlation to appropriate filters to remove the harmful coherent radiation. A tunable filter and/or a filter wheel is interposed along the optical path and is controlled by an adjustment system, illustratively servo controls. The adjustment system responds to the threat analyzer to select and interpose automatically the proper filter(s) to attenuate or block the coherent radiation. Thereafter, the fluence trigger and/or shutter operate to restore full operation along the optical path. The system and method provide look-through capability and mission continuity in the face of unknown laser threats.
Abstract:
A self-contained, electro-optic instrument measures and displays the intensity emitted by an ultraviolet (UV) light source. The instrument is a portable, battery-operated device which has the size and shape of a flashlight. The measurement head receives various light guide adapters to provide a proper fit for a light guide of the UV spot curing system being used. Alternatively, the measurement head may be fitted with a wide angle lens to receive UV light for environment safety testing. In operation with a spot curing system, the instrument is gripped in one hand while the light guide is inserted in the adapter in the measurement head with the other hand. Once the spot curing system's light guide is inserted, a start switch on the body of the instrument is depressed and a measurement is taken. When the start switch is released, the measurement temporarily stored and displayed on a display, such as a liquid crystal display (LCD). Operation is similar for environmental safety testing except the instrument is simply pointed in a direction where the UV light is to be measured.
Abstract:
System and method for analyzing pulses from an excimer laser by measuring light energy rather than heat energy. The output of the laser is monitored with a photodetector to provide electrical current pulses corresponding to the intensity of the light in individual ones of the laser pulses. The current pulses are integrated to provide voltages corresponding to the light energy of the laser pulses, and the voltages are converted to digital signals. The digital signals are accumulated during the exposure period to determine the total light energy of the pulses during that period and also during a shorter interval of time during the exposure period. The light energy for the interval is divided by the length of the interval to determine the average intensity of the pulses during the interval. Displays are provided for the light energy and the intensity of the pulses, as well as the length of the exposure period.
Abstract:
A laser protection device comprising a plurality of edge filters for receiving an incident beam and progressively separating the desired optical energy from the laser energy contained in the beam. The first edge filter receives the incident beam and provides a first reflected beam and a first transmitted beam. One of the beams provided by the edge filter comprises a relatively high percent of desired optical energy and the other of the beams provided by the edge filter comprises a relatively high percentage of laser energy. The other edge filters are arranged in series to similarly progressively reduce the percentage of laser energy contained in the beam.