Abstract:
A sensor device, comprising a pyroelectric sensor which is set to operate in daylight, especially an infrared-based motion sensor, and an electronic evaluator. The electronic evaluator is connected downstream of the sensor and is configured to produce a control signal in response to a detector signal from the sensor in relation to a threshold value. The electronic evaluator also has a sensing device for measuring a daylight ambient brightness and a compensating device which is configured to respond to a considerable change in the daylight ambient brightness by modifying the threshold value and/or the detector signal to compensate.
Abstract:
A CVD processing reactor employs a pyrometer to control temperature ramping. The pyrometer is calibrated between wafer processing by using a thermocouple that senses temperature during a steady state portion of a processing operation.
Abstract:
An infrared ear thermometer includes a detector head housing, a heat sink, a recess formed in the heat sink, a thermopile sensor mounted within the recess, a thermistor, and temperature determination circuitry. The recess defines an aperture that limits the field of view of the thermopile sensor. The thermal capacities and conductivities of the heat sink and the thermopile sensor are selected so that the output signal of the thermopile sensor stabilizes during a temperature measurement. A method of determining temperature using the ear thermometer takes successive measurements, stores the measurements in a moving time window, averages the measurements in the moving window, determines whether the average has stabilized, and outputs an average temperature. A method of calculating a subject's temperature determines the temperature of a cold junction of the thermopile, looks up a bias and slope of the thermopile based upon the temperature of the cold junction, measures the output of the thermopile, and calculates the subject's temperature based upon a linear relationship between the output and the subject's temperature. The linear relationship is defined by the bias and the slope.
Abstract:
An infrared camera capable of automatically executing offset compensation so that fixed pattern noise is removed without the need of an operator comprises an offset compensation signal generation circuit and a shutter. The shutter is closed based on an offset compensation execution signal for carrying out offset compensation, the signal being automatically and periodically generated by the offset compensation signal generation circuit after execution of the first offset compensation.
Abstract:
Tympanic temperature measurements are obtained from the output of a radiation sensor mounted in an extension from a housing. The housing has a temperature display and supports electronics for responding to sensed radiation. The sensor is mounted in an improved extension which is shaped to fit into smaller ear canals, such as a child's ear canal or a swollen adult ear canal. Within the extension, the sensor is positioned in a highly conductive environment and receives radiation from an external target through a tube. Electronics determine the target temperature based on the sensor output signal and a temperature sensor signal.
Abstract:
Presented is a sensor system for the detection of thermal radiation, with a substrate (15) and several sensor elements (10) on the substrate (15), in which case at least one self-test device (53) is provided in order to generate heat which can be used for the heating of one or more sensor elements (10). The sensor elements (10) can be heated according to a typical time pattern during the self-testing process. Also presented is an advantageous process for the manufacture of the sensor system as well as an advantageous configuration of the total system, including signal processing.
Abstract:
A radiation detector for axillary temperature measurement comprises a wand having an axially directed radiation sensor at one end and an offset handle at the opposite end. The radiation sensor is mounted within a heat sink and retained by an elastomer in compression. The radiation sensor views a target surface through an emissivity compensating cup and a plastic film. A variable reference is applied to a radiation sensor and amplifier circuit in order to maintain full analog-to-digital converter resolution over design ranges of target and sensor temperature with the sensor temperature either above or below target temperature.
Abstract:
A shutter 3 which can be momentarily held open and immediately closed, is disposed adjacent to an aperture stop 4 in an optical system, and a temperature sensor 5 is provided for measuring the temperature of the shutter 3. The blades of the shutter 3 can be utilized as a reference heat source. With the shutter 3 disposed adjacent to the aperture stop 4, the optical equivalence in the case when a reference heat source is inserted and in the other case, is not spoiled. A shutter 202 which can be readily momentarily held open and immediately closed under control of a shutter controller 203, is disposed at the optical pupil position of a combination lens 201. When the shutter 202 is closed, thermal image data is stored in a shading memory 208. The shading data stored in the shading memory 8 is subtracted for each image element in a subtracter 207 from thermal image data, which is obtained by picking up external infrared image in the open state of the shutter, and the resultant difference data is outputted to a frame memory 209.
Abstract:
An infrared thermometer is disclosed comprising a first housing member having an interior chamber, and housing a sensor mounted within the chamber for sensing temperature change and generating an indicative electrical signal, means for directing infrared radiation from the object to be measured to the sensor, a shutter assembly for controlling the passing of infrared radiation to the sensor, an ambient temperature sensor for sensing ambient temperature within the interior chamber and generating an electrical signal indicative thereof, an electrical circuit for processing the electrical signals to calculate the temperature of the object to be measured, and an indicator for indicating the calculated temperature. A second hollow housing member operatively connected to the first housing member by a hinge. The second housing member is adapted to serve as a protective area for the probe of the IR thermometer inside the hollow configuration thereof and to serve as the lower portion of a pistol type grip when the IR thermometer is being operated by a user.
Abstract:
Temperature of a subject is continuously monitored using a remote sensor assembly mounted in a subject's ear canal. The remote assembly connects to a display housing which contains the temperature display and supports electronics for responding to the sensed radiation. In one configuration, the major components of the remote assembly include a radiation detector, a plug structure and a flexible extension. The radiation detector has a thermopile and a first temperature sensor in close thermal contact with a thermopile junction. The flexible extension connects the radiation detector with the plug structure. Because the flexible extension bends to the contours of an ear canal, the remote sensor assembly extends well into a subject's ear canal without discomfort. The plug structure is molded to fit securely in the concha region of an ear canal and includes a second temperature sensor which senses the temperature therein. Continuous temperature measurements are determined by combining the sensed temperature for the thermopile and the first and second temperature sensors and converting this combined signal to a temperature indication. In another configuration, the remote sensor assembly has a radiation detector and an ear-piece shaped to fit behind the subject's ear. The ear-piece replaces the plug structure for this configuration and provides the same functions. The flexible extension connects the radiation detector and the ear-piece. A hollow adapter shaped to fit in the concha region of an ear is positioned over a portion of the extension. The position of the adapter on the extension may be varied such that the depth of penetration of the radiation detector into the ear canal is adjustable.