Abstract:
A laser beam is scanned on a sample while a wavelength of the laser beam is varied. Quantity of fluorescence from the sample is detected. Absorption wavelength spectral characteristic data of fluorescence indicators whose kinds are known and which dye the sample is acquired. The absorption wavelength spectral characteristic data of a site to be discriminated is compared with the absorption wavelength spectral characteristic data of each of the fluorescence indicators of known kinds. The kind of fluorescence indicator dyeing the site to be discriminated is discriminated from a result of the comparison.
Abstract:
An apparatus is described which detects the presence or absence of coherent light and provides an estimate of the coherent light's wavelength. The apparatus employs a common-path "polarization interferometer" in which the two linear polarization paths act as interferometer legs. Electro-optic modulation is used to effect periodic differential path length changes in the interferometer. The apparatus performs synchronous time-integrating detection on the light emerging from the interferometer to measure coherent contributions in the presence of obscuring incoherent light.
Abstract:
A remote gas measuring apparatus and method utilizes the optical absorption line characteristics to determine an amount of gas of interest as may exist in an area under study. The remote gas measuring apparatus includes a source of electromagnetic radiation that can be projected toward the area in question and a light collecting arrangement. The light signal received is coupled to a fast light switch modulator which modulates the light signal to a first frequency. A second modulating arrangement modulates the light signal to a second frequency and includes a birefringent etalon device having a periodic spacing equal to the periodicity of the absorption lines of the gas of interest. The second modulating means is further effective such that, when an electric field is applied thereto the transmission spectra associated with the light signal is shifted between spectra which coincide with the absorption lines and spectra which fall between the absorption lines. The light signal from the etalon device is then conditioned and input to a detector configuration which distinguishes between the light signal at the first frequency and the light signal at the second frequency in order to determine at least a quantity of the gas of interest.
Abstract:
An optical sensor and a method of operating the optical sensor are provided. The optical sensor includes a light source configured to emit a light, and a path adjuster configured to adjust a traveling path of the light to reflect the light at a first time, and allow the light to pass through the path adjuster at a second time. The optical sensor further includes a light receiver configured to receive a reference light among the reflected light, and receive, among the light passing through the path adjuster, a measurement light related to a target material.
Abstract:
Methods are disclosed for improving one or more of jitter/timing, signal-to-noise ratio, signal integrity, stability, and repeatability of generation and measurement of Second Harmonic Generation (SHG) signals generated by a sample upon illumination by a light beam. The method may use precision hardware to control the generation of SHG signal and synchronize it with the optical detection process to improve the reliability and accuracy of measured SHG signals. A precise measurement of the initial SHG signal (Io) involves accurate temporal alignment between optical excitation and detection of the resulting SHG signal. Various disclosed systems and methods use high-speed Pockels Cell (PC) for controlling incident light, and precision electronics for synchronization.
Abstract:
A diagnostic test system includes a housing, a reader, and a data analyzer. The housing includes a port constructed and arranged to receive a test strip that includes a flow path for a fluid sample, a sample receiving zone couple to the flow path, a label that specifically binds a target analyte, a detection zone coupled to the flow path and comprising a test region exposed for optical inspection and having an immobilized test reagent that specifically binds the target analyte, and at least one reference feature. The reader is operable to obtain light intensity measurements from exposed regions of the test strip when the test strip is loaded in the port. The data analyzer is operable to perform operations including at least one of (a) identifying ones of the light intensity measurements obtained from the test region based on at least one measurement obtained from the at least one reference feature, and (b) generating a control signal modifying at least one operational parameter of the reader based on at least one measurement obtained from the at least one reference feature.
Abstract:
A detection particle suitable for multiplex detection of biomolecules, including a microcarrier with an encoding function, detection microparticles connected to the microcarrier, where the detection microparticle is suitable for light-initiated chemiluminescent detection. A multifunctional detection particle integrating encoding identification, magnetic separation, and light-initiated chemiluminescent detection functions was prepared. And an imaging detection and analysis device for the multifunctional detection particle was provided. The provided detection particle suitable for multiplex detection of biomolecules can realize a highly sensitive, fast, and washing-free multiplex detection method, which greatly increases the types of biomolecules that can be detected by a single reaction, and can remove unreacted signal labeled molecules without washing during the whole process, thus simplifying experimental steps, and improving detection efficiency. The method is suitable for the detection of proteins, nucleic acids, and small molecules.
Abstract:
The present invention aims at realizing a gas concentration estimation apparatus with versatility wherein the gas concentration estimation apparatus estimates concentration of a target component in an analyte gas by analyzing a light emitted from plasma of the analyte gas. The present invention is directed to a gas concentration estimation apparatus including: a plasma generation device that turns an analyte gas into a plasma state; and an analysis device that analyzes plasma light emitted from the plasma generated by the plasma generation device and estimates concentration of a target component in the analyte gas wherein the analysis device estimates the concentration of the target component based on luminescence intensity of a wavelength component corresponding to luminescence from a predetermined radical within the plasma light, and the predetermined radical is different in atomic structure from the target component and includes an atom or a molecule separated from the target component.
Abstract:
An embodiment of the present invention provides a continuous-wave terahertz generation and detection device using a photomixing technique, the device including: first and second light source units configured to output continuous-wave laser light sources, which have single wavelength and different frequencies, to generate optical signals; a first electro-optic phase modulator configured to shift a frequency of the optical signal generated by the first light source unit, and a second electro-optic phase modulator configured to shift a frequency of the optical signal generated by the second light source unit; a first optical amplifier configured to receive and amplify the optical signal whose frequency is shifted by the first electro-optic phase modulator and the optical signal generated by the second light source unit, and a second optical amplifier configured to receive and amplify the optical signal whose frequency is shifted by the second electro-optic phase modulator and the optical signal generated by the first light source unit; an opto-electronic converter configured to convert the optical signal amplified by the first optical amplifier into a terahertz wave; a photomixer configured to mix the optical signal amplified by the second optical amplifier and the terahertz wave generated by the opto-electronic converter and convert the mixed signal into an electrical signal; a photodetector configured to combine the optical signals transferred from the first and second optical amplifiers and convert the combined optical signal into an electrical signal; and a filter unit configured to filter the electrical signal passing through the photodetector, wherein the electrical signal obtained through the photodetector is compared with the electrical signal obtained by the photomixer, and phase noise having the same frequency is removed.
Abstract:
An object information acquiring apparatus is used, including: an optical transmission system for transmitting light from a light source; a photoacoustic probe including an irradiating end for irradiating an object with light and a receiver for receiving acoustic waves generated from the object that has been irradiated with light; a processor for acquiring information on the object based on the acoustic waves; a light quantity meter for measuring the quantity of light emitted from the irradiating end; a memory for storing a measurement value; and a presentation unit. The processor compares the measurement value with a reference value of light quantity or a history of measurement value stored in the memory, and provides a result regarding whether or not the measurement value is within a reference range to the presentation unit.