Abstract:
A system for measuring one or more characteristics of light of a photon energy Eph from a light source, that can be determined from measuring three-photon absorption events, the system comprising: a) a detector having a band gap material characterized by gap energy between 2.1 and 3 times Eph; b) an optical element configured to concentrate a beam of light from the light source on the detector; c) a signal amplifier that amplifies an output signal indicative of when three photons produced by the light source undergo a three-photon absorption event in the band gap material; and d) an analyzer that analyzes the output signal to count or measure a rate of the three-photon absorption events, and determines the one or more characteristics of the light from the light source.
Abstract:
A quantitative phase image generating method for a microscope, includes: irradiating an object with illumination light; disposing a focal point of an objective lens at each of a plurality of positions that are mutually separated by gaps Δz along an optical axis of the objective lens, and detecting light from the object; generating sets of light intensity distribution data corresponding to each of the plurality of positions based upon the detected light; and generating a quantitative phase image based upon the light intensity distribution data; wherein the gap Δz is set based upon setting information of the microscope.
Abstract:
A method includes: producing a light beam made up of pulses having a wavelength in the deep ultraviolet range, each pulse having a first temporal coherence defined by a first temporal coherence length and each pulse being defined by a pulse duration; for one or more pulses, modulating the optical phase over the pulse duration of the pulse to produce a modified pulse having a second temporal coherence defined by a second temporal coherence length that is less than the first temporal coherence length of the pulse; forming a light beam of pulses at least from the modified pulses; and directing the formed light beam of pulses toward a substrate within a lithography exposure apparatus.
Abstract:
A phase step diffractometer is disclosed that utilizes Fresnel diffraction from a 1D step. The main part of the device is a step with two flat parallel mirrors on either side. The phase difference (PD) is changed by varying the light incident angle and the step height. The diffracted lights from the step are caught by a CCD connected to a PC. By varying PD, the visibility of the three central diffraction fringes changes. This permits low uncertainties in the measurements of wavelength, coherence length, coherence width, plate thickness, surface topography and fine displacement of objects. In addition, the device can be used in determination of broad spectral line shapes and optical constants of materials.
Abstract:
A laser discrimination filter based on temporal coherence is presented. This filter comprises a multilayer device with "thick" layers such that the optical thickness of each layer is greater than the coherence length of the ambient light, but still much smaller than the coherence length of the laser light of interest. Thus, the spectral response of the device of this invention becomes dependent on the degree of temporal coherence of the incident light. If white light strikes the filter, multi-beam interference will not occur because of its short coherence length. The device acts like a stack of partially reflecting mirrors. If the laser light strikes the filter, multi-beam interference will still take place because of the long coherence length of the laser light. This causes the device to have different transmitting characteristics for laser light and white light. Therefore, this device functions as a laser discrimination device.
Abstract:
The present invention is directed at a coherence test reticle or lithographic plate, and a method for testing the coherence of a laser beam using the test reticle. The quality or coherence of the laser beam is measured by illuminating the test reticle and recording and/or analyzing the optical patterns generated by the illumination. The technique was designed for the characterization of laser-based systems via the detection of optical radiation modulated by transmissive, reflective and diffractive patterns printed on a reticle or lithographic plate designed specifically for this purpose. The novelty and advantages over the prior art are insensitivity to vibration, alignment, and multi-path differences associated with classical interferometric coherence measurement techniques. The technique is focus error insensitive. The robustness and convenience of the technique is driven by the use of a single plate with no optical alignment, making the technique easily implemented in the field.
Abstract:
The present invention is directed at a coherence test reticle or lithographic plate, and a method for testing the coherence of a laser beam using the test reticle. The quality or coherence of the laser beam is measured by illuminating the test reticle and the recording and/or analyzing the optical patterns generated by the illumination. The technique was designed for, but not limited to, the characterization of laser-based systems via the detection of optical radiation modulated by transmissive, reflective and diffractive patterns printed on a reticle or lithographic plate designed specifically for this purpose. The novelty and advantages over the prior art are insensitivity to vibration, alignment, and multi-path differences of classical interferometric coherence measurement techniques. Spatial coherence and longitudinal or temporal coherence may be measured independently. Vertical and horizontal coherence may be measured independently. The technique is focus error insensitive. That is to say, that focus errors will be recorded by the technique in a deterministic fashion and can be removed from the data. The robustness and convenience of the technique is driven by the single plate with no optical alignment, making the technique easily implemented in the field. The multiplexing of the feature orientations, sizes and line types and feature locations allows for the determination of coherence parameters as a function of position in the beam.
Abstract:
An incident light field is applied to the two separate front fiber faces of a pair of identical optical fibers which are initially held in a common plane. One fiber face is always kept stationary. The other fiber face may be moved either laterally in a plane common to the stationary face, or longitudinally into and out of the common plane. The output end of the device comprises two separate rear fiber faces that are held in a common plane. These faces are stationary. There is no lateral or longitudinal motion of one relative to the other. The light emerging from these two faces interferes in the far field. Straight line interference fringes whose spacing depends upon the lateral separation of the rear fiber faces are formed. The fringe modulation, however, depends upon the relative position of the front fiber faces. This modulation changes as one front face is scanned either laterally or longitudinally. The modulation changes with such motion is related to the degree of spatial or temporal coherence of the incident light field.
Abstract:
An interference device for discriminating between radiation sources of differing coherence length comprises means to divide received radiation from a source into two components. A path difference, defining a coherence length cut-off, is introduced into the path of one component and the components are brought together for interference. The recombined light passes through a reticle with alternate opaque and tranparent bars and an optical band-pass filter to a detector. Interference fringes present in the plane of the reticle are swept across the reticle by the action of the collection optical system of the device which includes a scanning rotating mirror. Two similar devices can be arranged for band-pass coherence length filtering and when used in conjunction with a light soruce whose coherence is modulated the device can be used for signalling.
Abstract:
A quantitative phase image generating method for a microscope, includes: irradiating an object with illumination light; disposing a focal point of an objective lens at each of a plurality of positions that are mutually separated by gaps Δz along an optical axis of the objective lens, and detecting light from the object; generating sets of light intensity distribution data corresponding to each of the plurality of positions based upon the detected light; and generating a quantitative phase image based upon the light intensity distribution data; wherein the gap Δz is set based upon setting information of the microscope.