Abstract:
An illumination system for an extreme ultraviolet (EUV) lithography system may include multiple sources of EUV light. The system may combine the light from the multiple sources when illuminating a mask.
Abstract:
An exposure apparatus and method to expose an object with an illumination beam irradiated on a mask from a light source disposes an optical unit between the light source and an optical integrator of an illumination optical system to illuminate the mask with an illumination beam, of which an intensity distribution on a Fourier transform plane with respect to a pattern on the mask has an increased intensity portion apart from the optical axis relative to a portion of the intensity distribution on the optical axis.
Abstract:
A dynamic pressure bearing manufacturing method, comprising the steps of forming a herringbone groove pattern on the outer peripheral surface of a cylindrical mask and a spiral groove pattern on the lower surface of the flange part thereof, inserting the mask in a dynamic pressure bearing and optical fibers into the mask, radiating light from an external light source to the mask through optical fibers to transfer the herringbone groove pattern onto the inner peripheral surface of the dynamic pressure bearing and, at the same time, radiating the light from the upper side of the flange part to transfer the spiral groove pattern onto the upper surface of the dynamic pressure bearing performing development, and forming a herringbone groove on the inner peripheral surface of the bearing by etching and a spiral groove on the upper surface thereof.
Abstract:
A method for forming an arbitrary pattern of sub-micron contact holes in a substrate using a combination of interferometric photolithography and optical photolithography with a non-critical mask. The substrate is covered with a photosensitive material and is exposed by a standing wave interference pattern produced by the superposition of two coherent laser beams. Then the substrate is rotated through 90null and exposed by the same pattern. The double exposure produces a regular array of sub-micron unexposed regions which are all potentially holes if developed. The photosensitive material is then covered by a non-critical photomask and a standard light source is used to exposed those areas of the photosensitive material containing unwanted holes. Upon final development, the desired pattern is obtained.
Abstract:
For allowing processing of a material into an intended three-dimensional configuration having different processed depths while suppressing an influence exerted on a processed configuration by a configuration of a transparent portion, a processing device includes an SR light source 1 for emitting SR light, an X-ray mask having a transparent portion of a predetermined configuration for passing the X-rays emitted from the SR light source 1, and exposure stage 3 for oscillating the X-ray mask and the material relatively to each other in accordance with a movement pattern determined based on the processing configuration of the processing material for moving the X-ray mask and the material relatively to each other and thereby oscillating the region where the material is irradiated with the X-ray passed through the transparent opening.
Abstract:
Container structures for use in integrated circuits and methods of their manufacture without the use of mechanical planarization such as chemical-mechanical planarization (CMP), thus eliminating CMP-induced defects and variations. The methods utilize localized masking of holes for protection of the inside of the holes during non-mechanical removal of exposed surface layers. The localized masking is accomplished through differential exposure of a resist layer to electromagnetic or thermal energy. The container structures are adapted for use in memory cells and apparatus incorporating such memory cells, as well as other integrated circuits.
Abstract:
A method of curing a photosensitive material (10) having a critical electrical field amplitude at which photoinitiation occurs. The method includes contacting the photosensitive material, e.g., a photoinitiator/monomer resin system, with a substrate (18), such as an optical element, so as to form an interface (20) between the photosensitive material and the substrate. A light beam (12) is directed into the substrate such that the light beam is totally internally reflected from the interface within the substrate so that an evanescent wave is created in the photosensitive material. In order for curing to occur, the electric field amplitude of the evanescent wave at the interface must be at least equal to the critical electric field amplitude of the photosensitive material.
Abstract:
A method of fabricating a diffraction grating by utilizing a single substrate comprises the steps of forming a photosensitive material layer and a light transmission reducing film having a predetermined pattern integrally with each other on the substrate, exposing the photosensitive material layer by exposure irradiation light via the light transmission reducing film, and developing the photosensitive material layer after exposure. It is composed so that the direction of exposure and the direction of development are opposite to each other. It is possible to fabricate a diffraction grating in which each grating is formed on a predetermined substrate at a predetermined pitch and a root portion in a cross-section of each diffraction grating is constricted. In this way, it is possible to reduce or eliminate interfaces, so that the generation of noise light can be effectively suppressed and a diffraction grating having a high diffraction efficiency can be made.
Abstract:
A method for transferring a fine pattern (12) on a mask (11) onto a substrate (17) by a projection exposure apparatus including an illumination optical system (1-10) for irradiating an illuminating light on the mask (11), and a projection optical system (13) for projecting an image of the fine pattern (12) on the illuminated mask onto the substrate (17). The illuminating light is irradiated at least in the form of a pair of light beams opposedly inclined with respect to the mask through a pair of transparent windows (6a, 6b) of a spatial filter (6) whereby either one of the ±first-order diffracted beams and the 0-order diffracted beam produced from the fine pattern (12) of the mask (11) illuminated by each light beam are respectively passed apart by the equal distance from the optical axis of the projection optical system at or near to the Fourier transform plane within the projection optical system with respect to the fine pattern (12) of the mask (11), thereby forming on the substrate (17) a high-resolution projected image of a strong light-and-dark contrast with a high degree of focus depth.
Abstract:
A processing method for etching a substrate is described. This method includes subjecting a surface of a substrate to be processed to selective irradiation with a light in a gas atmosphere to form a surface-modified layer. The substrate surface with the surface-modified layer is then annealed to stabilize and make the surface-modified layer more etch resistant. Both the stabilized surface-modified layer and a non-modified portion of the substrate are then subjected to dry etching, thereby utilizing the higher resistance to dry etching of the stabilized surface-modified layer compared to the non-modified portion to selectively etch the non-modified portion to a desired depth.