Abstract:
A field emission device having improved properties and which finds use in display devices, such as a flat panel displays. Known devices and displays suffer from problems such as complexity of fabrication and limited color gamut. The present device provides a field emission backplate which is made from a substantially semiconductor based material and has a plurality of grown tips. The device also includes at least one electro-luminescent or photo-luminescent material having a fluorescent material such as a fluorescent dye doped material chemically attached thereto.
Abstract:
A carbon substance comprises a structure and line-shaped bodies, the structure having a size ranging from about 1 μm to about 100 μm and including carbon and a metal or a metallic oxide, and the line-shaped bodies having diameters smaller than about 200 nm and including carbon as a main component thereof and growing radially from a surface of the structure. A method for manufacturing the carbon substance uses a thermal decomposition of a source gas containing carbon in the vicinity of a catalyst, wherein the catalyst comprises a first and a second materials, the first material being Ni or a Ni oxide and the second material being In or an In oxide; and the thermal decomposition is performed at a temperature ranging from about 675° C. to about 750° C. An electron emission element uses the carbon substance as an electron emission material. A composite material includes the carbon substance in its matrix.
Abstract:
In the present invention, there are provided self-assembled ZnO nanotips grown on relatively low temperatures on various substrates by metalorganic chemical vapor deposition (MOCVD). The ZnO nanotips are made at relatively low temperatures, giving ZnO a unique advantage over other wide bandgap semiconductors such as GaN and SiC. The nanotips have controlled uniform size, distribution and orientation. These ZnO nanotips are of single crystal quality, show n-type conductivity and have good optical properties. Selective growth of ZnO nanotips also has been realized on patterned (100) silicon on r-sapphire (SOS), and amorphous SiO2 on r-sapphire substrates. Self-assembled ZnO nanotips can also be selectively grown on patterned layers or islands made of a semiconductor, an insulator or a metal deposited on R-plane (01{overscore (1)}2) Al2O3 substrates as long as the ZnO grows in a columnar stucture along the c-axis [0001] of ZnO on these materials. Such self-assembled ZnO nanotips and nanotip arrays are promising for applications in field emission displays and electron emission sources, photonic bandgap devices, near-field microscopy, UV optoelectronics, and bio-chemical sensors.
Abstract:
In a method of creating a field electron emission material, vanadium or a vanadium compound is disposed in respective locations of a substrate in order to create a plurality of emission site at said locations, at an average density of at least 10cm−2.Preferably, the vanadium or vanadium compound is in the form of particles.
Abstract:
An electron source forming substrate wherein an insulating material film is disposed on the surface of the substrate at which surface an electron-emitting device is arranged. The insulating material film contains a plurality of metallic oxide particles having an average particle size within the range of 6 nm to 60 nm as expressed in a median value, and suppresses undesirable diffusion of Na from the substrate, thereby makes stable an electron-emitting characteristics, without an adverse effect due to the Na diffusion, even elapsing longer time.
Abstract:
A field emission device (FED) and a method for fabricating the FED are provided. The FED includes micro-tips with nano-sized surface features. Due to the micro-tips as a collection of a large number of nano-tips, the FED is operable at low gate turn-on voltages with high emission current densities, thereby lowering power consumption.
Abstract:
A method for making a field emission cold cathode for use in vacuum tubes. A carbon velvet material is coated with a low work function cesiated salt and bonded to a cathode surface. Alternatively, the carbon velvet material is bonded to the cathode surface before being coated with the cesiated salt. The coating may be applied by spraying the carbon velvet material with a cesiated salt solution, or by dipping the material into a crucible of molten cesiated salt. This abstract is provided to comply with the rules requiring an abstract, and is intended to allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning the claims.
Abstract:
An amorphous diamond electrical generator having a cathode at least partially coated with amorphous diamond material and an intermediate member coupled between the cathode and an anode. The amorphous diamond material can have at least about 90% carbon atoms with at least about 20% of the carbon atoms bonded in a distorted tetrahedral coordination. The amorphous diamond coating has an energy input surface in contact with a base member of the cathode and an electron emission surface opposite the energy input surface. The electron emission surface can have an asperity height of from about 10 to about 1,000 nanometers and is capable of emitting electrons upon input of a sufficient amount of energy. The intermediate member can be coupled to the electron emission surface of the amorphous diamond coating such that the intermediate member has a thermal conductivity of less than about 100 W/mK and a resistivity of less than about 80 nullnull-cm at 20null C. The amorphous diamond electrical generator is a thermionic emission device having improved electron emission properties.