Abstract:
In the present invention, the structure of an electrification control electrode is changed from a grid type to a slit type and thereby shadows are not formed when a wafer is irradiated with a beam. Further, a beam forming slit is disposed ahead of an electrification control slit, thus the electrification control slit is prevented from being irradiated with an electron beam for preliminary electrification, and thereby secondary electrons which disturb the control of the electrification are inhibited from being generated. The shape of the slit is designed so that the strength of an electron beam may gradually decrease toward both the ends of an electron beam irradiation region in the longitudinal direction thereof. Furthermore, a preliminary static eliminator to remove or reduce the unevenness in an electrification potential distribution which has undesirably been formed earlier is disposed.
Abstract:
A means of neutralizing the excess charge on workpieces, such as semiconductor wafers, that results from ion-implantation processes, wherein the excess positive charge on a small area of the workpiece surface is locally sensed, and in response, an appropriate dose of charge-compensating electrons is delivered from an electron emission source to the area of excess charge on the workpiece. A charge-sensing probe and a voltage-controlled electron generator array are configurationally and operatively coupled in a closed feedback loop, and are made to scan the surface of the workpiece, in close but non-contacting proximity to the workpiece. Arrays of charge-sensing probes and electron generator arrays can be configured for rapid coverage of the implanted areas of the workpiece. The present invention has significant advantages over other methods, such as plasma and electron showers and plasma flood systems, for neutralizing the excess charge due to ion implantation.
Abstract:
To make it possible to observe the bottom of a contact hole and internal wires, in observation of the contact hole 102, by scanning it at a predetermined acceleration voltage, the positive charge 106 is formed on the surface of the insulator 101, and the secondary electrons 104 are attracted in the hole by this electric field, and the hole is continuously scanned at an acceleration voltage different from the acceleration voltage, and the sample is observed. When the wires embedded in the insulator are to be observed, by observing the insulator at a predetermined acceleration voltage, an electron beam is allowed to enter the sample, and the sample is continuously scanned at an acceleration voltage different from the acceleration voltage, and hence the existence of wires is reflected as a change in the charge of the surface, and it is observed. In either case, the acceleration voltage before observation is different from the one during observation, and the sample surface is temporarily radiated at an acceleration voltage positively generating a positive or negative charge, and thereafter, the acceleration voltage is returned to a one suited to observation, and the sample is observed.
Abstract:
A particle-optical apparatus comprising a sample holder for receiving a sample, a particle source embodied to produce a primary beam of first electrically charged particles along an optical axis for the purpose of irradiating the sample, first detector embodied to detect second electrically charged particles that emanate from the sample as a result of the irradiation thereof, a detection space that at the least is formed by the sample holder and the first detector, and an immersion lens embodied to produce a magnetic field for the purpose of focusing the primary beam in the vicinity of the sample holder. The first detector are embodied to produce an electric field in the detection space, and the detection space is embodied to comprise a gas.
Abstract:
A particle-optical apparatus comprising a sample holder for receiving a sample, a particle source embodied to produce a primary beam of first electrically charged particles along an optical axis for the purpose of irradiating the sample, first detector embodied to detect second electrically charged particles that emanate from the sample as a result of the irradiation thereof, a Detection space that at the least is formed by the sample holder and the first detector, and an immersion lens embodied to produce a magnetic field for the purpose of focusing the primary beam in the vicinity of the sample holder. The first detector are embodied to produce an electric field in the detection space, and the detection space is embodied to comprise a gas.
Abstract:
A plasma flood system for use in the implantation of ions in a semiconductor substrate comprising a plasma and low energy electron source for developing a plasma containing low energy electrons for magnetic field enhanced transmission to a negatively biased, magnetic field assisted electron confinement tube and into an ion beam flowing axially through the tube to the semiconductor substrate for self regulating and neutralizing positive charges on the surface of the substrate without causing significant negative charging of the substrate.
Abstract:
An ion implanter encloses a semiconductor substrate adjacent to a fixing member which retains a semiconductor substrate on a supporting bed. The ion implanter includes a ring electrode for generating secondary electrons in response to incident ions and a cup-like electrode for directing the secondary ions to the semiconductor substrate. The ring electrode is negatively biased with respect to the supporting bed and the cup-like electrode surrounds the outer edge of the semiconductor substrate. The ion implanter increases the quantity of the secondary electrons produced and efficiently directs them to the semiconductor substrate. The semiconductor substrate which is electrically charged by implanting ions is neutralized, preventing dielectric breakdown from occurring in an insulating film.