Abstract:
The present invention uses as a detector for adjustment measurement, monodyne interference between a microwave for plasma generation and the reflected wave. Analysis of the interference wave that is obtained using monodyne interference allows finding of the phase difference between the incident and the reflected wave and the amplitude of that reflected wave; and controlling of an excited microwave generation/control system based on them allows impedance matching between the excited microwave and the plasma. This method allows very high precision phase detection, and calculation of the characteristics of the plasma based on the detected phase shift. Therefore, it is possible to distinguish noises even in the vicinity of the matched region.
Abstract:
A method and system for measuring at least one of a plasma density and an electron density (e.g., in a range of 1010 to 1012 electrons/cm−3) using plasma induced changes in the frequency of a microwave oscillator. Measurement of at least one of the plasma density and the electron density enables plasma-assisted processes, such as depositions or etches, to be controlled using a feedback control. Both the measurement method and system generate a control voltage that in turn controls a plasma generator to maintain at least one of the plasma density and the electron density at a pre-selected value.
Abstract translation:使用等离子体引起的微波振荡器的频率变化来测量等离子体密度和电子密度(例如,在1010至1012电子/ cm -3)的范围中的至少一个的方法和系统。 测量等离子体密度和电子密度中的至少一个使得能够使用反馈控制来控制诸如沉积或蚀刻的等离子体辅助处理。 测量方法和系统都产生控制电压,该控制电压又控制等离子体发生器以将等离子体密度和电子密度中的至少一个保持在预选值。
Abstract:
An apparatus for controlling an oscillation output of a magnetron includes a switch circuit controlled of ON/OFF states thereof by a pulse signal, a rectifying circuit for supplying microwave power pulses to the magnetron, and a transformer having a primary side and a secondary side. The primary side has a first terminal and a second terminal, where the first terminal is connected to an A.C. power supply, the second terminal is connected to the switch circuit. The secondary side is connected to the rectifying circuit. The switch circuit is turned ON/OFF by the pulse signal so that a duty factor of the microwave power pulses output from the rectifying circuit and a repetition frequency of the duty cycle thereof become constant.
Abstract:
A microwave plasma source that generates a microwave plasma in a processing space in which a target substrate is processed, includes: a microwave generation part for generating microwave; a waveguide through which the microwave generated by the microwave generation part propagates; an antenna part including a slot antenna having a predetermined pattern of slots formed therein and being configured to radiate the microwave propagating through the waveguide into the processing space and a microwave-transmitting plate being made of a dielectric material and being configured to transmit the microwave radiated from the slots therethrough and supply the microwave into the processing space; a temperature detector for detecting a temperature at a predetermined position in a microwave propagation path leading to the slot antenna; and an abnormality detection part for receiving the temperature detected by the temperature detector and detect an abnormality in the microwave propagation path based on the detected temperature.
Abstract:
Plasma is generated in a semiconductor process chamber by a plurality of microwave inputs with slow or fast rotation. Radial uniformity of the plasma is controlled by regulating the power ratio of a center-high mode and an edge-high mode of the plurality of microwave inputs into a microwave cavity. The radial uniformity of the generated plasma in a plasma chamber is attained by adjusting the power ratio for the two modes without inputting time-splitting parameters for each mode.
Abstract:
Methods and apparatus for igniting a process plasma within a plasma chamber are provided. One or more self-resonating devices are positioned within a plasma chamber relative to a plasma generation volume within the plasma chamber. The plasma generation volume is defined by the plasma chamber. Each of the self-resonating devices generates an ignition plasma. The ignition plasmas cause a partial ionization of an ignition gas. The partially ionized ignition gas allows for ignition of a process plasma by applying an electric field to the plasma generation volume.
Abstract:
A microwave plasma source that generates a microwave plasma in a processing space in which a target substrate is processed, includes: a microwave generation part for generating microwave; a waveguide through which the microwave generated by the microwave generation part propagates; an antenna part including a slot antenna having a predetermined pattern of slots formed therein and being configured to radiate the microwave propagating through the waveguide into the processing space and a microwave-transmitting plate being made of a dielectric material and being configured to transmit the microwave radiated from the slots therethrough and supply the microwave into the processing space; a temperature detector for detecting a temperature at a predetermined position in a microwave propagation path leading to the slot antenna; and an abnormality detection part for receiving the temperature detected by the temperature detector and detect an abnormality in the microwave propagation path based on the detected temperature.
Abstract:
A microwave supply apparatus includes a waveguide, a circulator, and a matcher, a first port of the circulator receives a microwave from an input end. First and second ends of the waveguide are coupled to second and third ports of the circulator, respectively. The matcher is provided between the input end and the first port of the circulator. The waveguide includes a rectangular waveguide having first and second walls facing each other, and third and fourth walls facing each other. A slot hole is formed in the first wall, and the slot hole is provided at a region deviated to the third wall side. The waveguide includes a first ridge portion provided therein. The first ridge portion faces the slot hole, is in contact with the second wall and third wall, and is separated from the first wall and fourth wall.
Abstract:
A system provides post-match control of microwaves in a radial waveguide. The system includes the radial waveguide, and a signal generator that provides first and second microwave signals that have a common frequency. The signal generator adjusts a phase offset between the first and second signals in response to a correction signal. The system also includes first and second electronics sets, each of which amplifies a respective one of the first and second microwave signals. The system transmits the amplified, first and second microwave signals into the radial waveguide, and matches an impedance of the amplified microwave signals to an impedance presented by the waveguide. The system also includes at least two monitoring antennas disposed within the waveguide. A signal controller receives analog signals from the monitoring antennas, determines the digital correction signal based at least on the analog signals, and transmits the correction signal to the signal generator.
Abstract:
A system provides post-match control of microwaves in a radial waveguide. The system includes the radial waveguide, and a signal generator that provides first and second microwave signals that have a common frequency. The signal generator adjusts a phase offset between the first and second signals in response to a correction signal. The system also includes first and second electronics sets, each of which amplifies a respective one of the first and second microwave signals. The system transmits the amplified, first and second microwave signals into the radial waveguide, and matches an impedance of the amplified microwave signals to an impedance presented by the waveguide. The system also includes at least two monitoring antennas disposed within the waveguide. A signal controller receives analog signals from the monitoring antennas, determines the digital correction signal based at least on the analog signals, and transmits the correction signal to the signal generator.