Abstract:
A cathode assembly is for use in a radiation generator and includes an ohmically heated cathode, and a support having formed therein a hole and a recess at least partially surrounding the hole. In addition, there is a mount coupled to the support. The mount includes a larger outer frame positioned within the recess, a smaller inner frame carrying the ohmically heated cathode and spaced apart from the larger outer frame, and a plurality of members coupling the smaller inner frame to the larger outer frame.
Abstract:
A fiberized single photon sensitive spectrometer on a 32-channel PMT sensor is highly sensitive with broad detection dynamic range. The spectrometer enables accurate and high speed detection, identification and analysis of biological samples labeled with multiple fluorescent markers, such as compositions of multi-color fluorescence signals or radiation emitted by multiple fluorescence dyes. A fiberized optical input of the spectrometer allows an easy and efficient coupling to any measurement system based on fiber collection of the analyzed fluorescence. The spectrometer provides highly accurate DNA sequencing. A 32 channel PMT single photon detector has a detection dynamic range of more than 20 bits and has a frame rate of about 3300 frames per second. The dynamic range of the detector's pixels reaches 108 photocounts per second.
Abstract:
A fiberized single photon sensitive spectrometer on a 32-channel PMT sensor is highly sensitive with broad detection dynamic range. The spectrometer enables accurate and high speed detection, identification and analysis of biological samples labeled with multiple fluorescent markers, such as compositions of multi-color fluorescence signals or radiation emitted by multiple fluorescence dyes. A fiberized optical input of the spectrometer allows an easy and efficient coupling to any measurement system based on fiber collection of the analyzed fluorescence. The spectrometer provides highly accurate DNA sequencing. A 32 channel PMT single photon detector has a detection dynamic range of more than 20 bits and has a frame rate of about 3300 frames per second. The dynamic range of the detector's pixels reaches 108 photocounts per second.
Abstract:
A support mechanism for protecting an object is described. The support system includes at least one support or friction ring for providing dynamic protection to the object. One embodiment includes a support ring having corrugated bumps. Another embodiment includes multiple support rings axially separated by spacers. In another embodiment a support mechanism is provided having at least one friction ring in combination with O-rings. A compound optical coupler is also described, which has a self-wetting clear optical coupling gel and an elastomeric load ring.
Abstract:
Plural electronic or optical images are provided in a streak optical system, as for instance by use of plural slits instead of the conventional single slit, to obtain a third, fourth, etc. dimension—rather than only the conventional two, namely range or time and azimuth. Such additional dimension or dimensions are thereby incorporated into the optical information that is to be streaked and thereby time resolved. The added dimensions may take any of an extremely broad range of forms, including wave-length, polarization state, or one or more spatial dimensions—or indeed virtually any optical parameter that can be impressed upon a probe beam. Resulting capabilities remarkably include several new forms of lidar spectroscopy, fluorescence analysis, polarimetry, spectropolarimetry, and combinations of these, as well as a gigahertz wavefront sensor.
Abstract:
A photomultiplier tube comprises an evacuated envelope having a photoemissive cathode therein. A cage assembly including an anode and a plurality of closely spaced dynodes are within the envelope. The anode has at least one support rod. Each of the dynodes has a pair of dynode tabs formed in the ends thereof. A pair of dynode support spacers having a plurality of stress isolation apertures and electrode support apertures formed therethrough are provided for supporting the dynodes and the anode. The dynode tabs and the anode support rod extend through the electrode support apertures. A plurality of deformable stress isolation eyelets comprising a tubular shank with a flare formed in one end of the shank are disposed within a different one of the stress isolation apertures. The flare diameter is greater than the diameter of the stress isolation apertures thereby retaining the eyelets within the apertures. A second end of the tubular shank, opposite the flared end, extends outwardly from the dynode support spacers. The outwardly extending end portion is crimped to lock the eyelets within the stress isolation apertures. Nickel leads are provided for flexibly interconnecting the crimped end portion of a different one of each of the eyelets to one end of each of the dynodes and to one end of the anode support rod. A stem closes one end of the envelope. A plurality of relatively stiff cage assembly support leads extend through the stem and are welded to the crimped end portion of the eyelets thereby firmly securing the cage assembly to the support leads and indirectly connecting the support leads to the dynodes and the anode.