Abstract:
A light source device, including an alternating current high-pressure mercury lamp having a pair of electrodes opposite each other with a spherical light-emitting part having at least 0.15 mg/mm3 of mercury and halogen at 10−6 μmol/mm3 to 10−2μmol/mm3, and cylindrical hermetically sealed parts extending from both ends of the light-emitting part. External leads protrude from the ends of the light-emitting part for receiving alternating current. A reflecting mirror having a concave reflecting part surrounds the light-emitting part and a cylindrical neck part. An adhesive for securing the mercury lamp and the reflecting mirror fills a periphery of the hermetically sealed parts of the mercury lamp. The distance L2 (mm) from a center in between the electrodes to the adhesive is set at a value of one of 16 mm or less and 20 mm or greater.
Abstract translation:一种光源装置,包括交替电压高压汞灯,其具有彼此相对的一对电极,球形发光部分具有至少0.15mg / mm 3的汞和10-6mumol / mm 3至10的汞, 2mumol / mm 3,以及从发光部的两端延伸的圆筒形密封部。 外部引线从用于接收交流电的发光部的端部突出。 具有凹面反射部的反射镜包围发光部和圆筒状的颈部。 用于固定汞灯和反射镜的粘合剂填充汞灯的密封部分的周边。 从电极到粘合剂之间的中心的距离L2(mm)设定为16mm以下且20mm以上的一个的值。
Abstract:
A ceramic discharge lamp and a method of making the lamp includes a ceramic discharge chamber with two concave parts that are attached to each other at a seam, and a ceramic reflector directly attached to an exterior surface of the discharge chamber at the seam, or directly attached to a ceramic capillary that is attached to one of the two concave parts. The lamp finds particular application where focused light is required, such as injection of light into a fiber optic device. The lamp can be very small and has an advantage that the discharge chamber is isolated from the reflective surfaces so that the optically active parts of the reflector are not covered with salt from the preferred metal halide lamp fill.
Abstract:
An integral HID reflector lamp may be formed with an HID held in a reflector. An inner element is mechanically coupled to the reflector. The inner element is formed with a first mechanical coupling to mate with the reflector, a second mechanical coupling to mate with a circuit board, and an electrical coupling to at least electrically couple one of the leads to the circuit board. A circuit board has an edge mechanically coupled to the inner element and electrically connected to the leads by an electrical coupling on the inner element. A heat sink spans at least one side of the circuit board and forming an EMI shielding. An outer cover encloses the heat sink, circuit board, and inner element and coupled to the assembly of the reflector, HID lamp, inner element, and heat sink with each elements of the assembly clipped together.
Abstract:
A method and apparatus that effectively filters infrared light from fluorescent lighting and that is easily adapted to typical fluorescent lighting and assemblies. A fluorescent lighting fixture includes a cover for filtering the infrared light from a fluorescent light source of the fixture. The cover includes an infrared filter for substantially preventing emission of infrared light from the fluorescent lighting fixture and a protective layer for preventing damage to the infrared filter.
Abstract:
A back light unit for a liquid crystal display device for improving uniformity of the light and dispensing with optical sheets. The back light unit includes a light source having a holographic pattern formed on a surface thereof opposite the display device which is to display a picture, and a reflective plate under the light source.
Abstract:
A reflector lamp having a concave reflector with a base at one end and a lens at an opposite end. A discharge lamp having a fill of or forming salts maintained by heat in a vapor phase is located near the base end of the reflector. When the reflector lamp is oriented in a near-horizontal position, the fill coming into contact with a colder, lower side of the discharge lamp partially condenses, coloring light passing through the condensate. At least two interior reflector surface areas, which have contours defined by rotating generatrices with configurations of conic section lines, reflect the colored light to distribute it evenly over a surface being illuminated and avoid creating a hot spot.
Abstract:
A lamp having a measurable ultra violet light emission and having thereon a first marking revealing at least the operating characteristics of said lamp and a second marking evidencing a change in characteristics in response to exposure to ultra violet emissions. In a preferred embodiment of the invention a symbol or other indicia is provided on the lamp as the second marking that fades in accordance with the number of hours the lamp is operating, thus providing an indication of the UV output of the lamp.
Abstract:
The invention relates to a tubular lamp comprising a lamp vessel (10) which accommodates a light source (11a, 11b, 11c). A first part of the lamp vessel is provided with a coating (13) reflective of radiation emitted by said light source. A second part of the lamp vessel is provided with a light-absorbing coating (14). The light absorbing coating comprises pigments incorporated in a sol gel matrix.
Abstract:
A field-emission-based flat light source includes the following: a light-permeable substrate; a plurality of line-shaped cathodes; an anode; a light-reflecting layer; and a fluorescent layer. The light-permeable substrate has a surface, and the line-shaped cathodes, with a plurality of carbon nanotubes formed and/or deposited thereon, are located on the surface of the light-permeable substrate. The anode faces the cathodes and is spaced from the cathodes to form a vacuum chamber. The light-reflecting layer is formed on the anode and faces the cathode. The fluorescent layer is formed on the light-reflecting layer.
Abstract:
A method for enhancing the luminance and uniformity of a flat panel light source provides a patterned reflective structure to reflect or deflect the light back onto the display area of a field emission display panel and lighten the area which used to be blocked by spacers. The patterned reflective structure may be designed in several places, such as between an end surface of a spacer and the inner surface of an anode substrate, or on the inner surface of the edges of the side-frame between the anode plate and the cathode plate by further coating a reflective material, or on the side-frames surrounding the panel by further coating a reflective material, etc. With such a patterned reflective structure, the luminance and uniformity of a flat panel light source are enhanced.