Abstract:
The present application discloses an ultraviolet lamp tube and a novel gas discharge UV lamp, which, through unique coating methods, can ensure monochromaticity of light output of the light source, while increasing the luminous angle of the ultraviolet lamp tube, thus effectively improving the light efficiency, simplifying structure, and greatly reducing production costs.
Abstract:
The invention is directed to a sealed high intensity illumination device configured to receive a laser beam from a laser light source. A sealed chamber is configured to contain an ionizable medium. The chamber includes a reflective chamber interior surface having a first parabolic contour and parabolic focal region, a second parabolic contour and parabolic focal region, and an interface surface. An ingress surface is disposed within the interface surface configured to admit the laser beam into the chamber, and an egress surface disposed within the interface surface configured to emit high intensity light from the chamber. The first parabolic contour is configured to reflect light from the first parabolic focal region to the second parabolic contour, and the second parabolic contour is configured to reflect light from the first parabolic contour to the second parabolic focal region.
Abstract:
A laser-sustained plasma illuminator system includes at least one laser light source to provide light. At least one reflector focuses the light from the laser light source at a focal point of the reflector. An enclosure substantially filled with a gas is positioned at or near the focal point of the reflector. The light from the laser light source at least partially sustains a plasma contained in the enclosure. The enclosure has at least one wall with at least one property that is varied to compensate for optical aberrations in the system.
Abstract:
The geometry of a High Intensity Discharge (HID) arc tube is controlled to improve lamp color control and temperature distribution. In some embodiments, conical sections located at the transition zones near the electrodes are included to provide tunnel-like body-leg interface portions. The body-leg interface portions are shaped so as to advantageously control the temperature distribution along the internal surface of the discharge chamber wall so that it monotonically decreases resulting in a stable local cold spot location at the body-leg interface.
Abstract:
A plasma lamp apparatus. The apparatus has an arc tube structure having an inner region and an outer region in one or more embodiments. The arc tube structure has a first end comprising an associated first end diameter and a second end comprising a second end diameter according to a specific embodiment. The apparatus also has a center region provided between the first end and the second end in one or more embodiments. The center region has a center diameter, which is less than a first end diameter and/or a second end diameter.
Abstract:
A light-extraction apparatus for an optical-film lighting set having a visible-light coating include a transparent sealed body, a wide AOR (0 degree to 90 degrees) optical film for reflecting ultraviolet lights and a visible light layer. The transparent sealed body is formed as a hollow shell body to accommodate an ultraviolet light source. A supporting member coated with the optical film and the visible light layer is constructed to a wall of the shell body or inside the shell body. The visible light layer is consisted of monolayered fluorescent or phosphorescent particles, and the particles are evenly distributed to coat on the interior wall of the shell body or the supporting member inside the shell body in a sparse scattering manner. A fixed area ratio of the coverage of the particles to that of the inter-particle spacing is then provided to the visible light layer for obtaining a higher illumination performance.
Abstract:
The invention describes a gas-discharge lamp (1) comprising a discharge vessel (11) arranged in an outer quartz glass envelope (12), which gas-discharge lamp (1) comprises a local thermal area contact (2) between a lower surface (21) of a localised deformation (20) of the outer envelope (12) and a corresponding isolated area (22) on the outer surface (23) of the discharge vessel (11). The invention also describes a method of manufacturing a gas-discharge lamp (1), which method comprises the steps of arranging a discharge vessel (11) in an outer quartz glass envelope (12); forming a localised deformation (20) of the outer envelope (12) to create a local thermal area contact (2) between a lower surface (21) of the localised deformation (20) and a corresponding isolated area (22) on the outer surface (23) of the discharge vessel (11).