Abstract:
A lamp including a first and second lamp substrate with a first and second external electrode, respectively, and a first and second internal phosphor coating, respectively, wherein the first phosphor coating is a phosphor monolayer. A method of manufacturing a lamp, including screen-printing a phosphor monolayer on a first lamp substrate; screen-printing a phosphor layer on a second lamp substrate; joining the phosphor-coated faces of the first and second lamp substrates together with a seal; and joining a first and second electrode to the uncoupled exterior faces of the first and second lamp substrates, respectively.
Abstract:
In an external electrode type discharge lamp, a gadolinium oxide film obtained by baking solution containing at least one of gadolinium octate and gadolinium propionate is provided in a portion including at least a portion corresponding to an external electrode.
Abstract:
A light-extraction apparatus for an optical-film lighting set having a visible-light coating include a transparent sealed body, a wide AOR (0 degree to 90 degrees) optical film for reflecting ultraviolet lights and a visible light layer. The transparent sealed body is formed as a hollow shell body to accommodate an ultraviolet light source. A supporting member coated with the optical film and the visible light layer is constructed to a wall of the shell body or inside the shell body. The visible light layer is consisted of monolayered fluorescent or phosphorescent particles, and the particles are evenly distributed to coat on the interior wall of the shell body or the supporting member inside the shell body in a sparse scattering manner. A fixed area ratio of the coverage of the particles to that of the inter-particle spacing is then provided to the visible light layer for obtaining a higher illumination performance.
Abstract:
An energy saving gas discharge lamp, and method of making same, is provided. The gas discharge lamp includes a light-transmissive envelope, and an electrode within the light-transmissive envelope to provide a discharge. A light scattering reflective layer is disposed on an inner surface of the light-transmissive envelope. A phosphor layer is coated on the light scattering reflective layer. A discharge-sustaining gaseous mixture is retained inside the light-transmissive envelope. The discharge-sustaining gaseous mixture includes more than 80% xenon, by volume, at a low pressure.
Abstract:
In different embodiments, a low-pressure discharge lamp (1) is provided. The low-pressure discharge lamp has a discharge vessel (2) and a coating structure (7). The coating structure is formed on an inner face of the discharge vessel (2). The coating structure (7) has first fluorescent particles (34) which have at least one fluorescent substance that emits red light and the average particle size of which ranges from 0.5 μm to 1.9 μm, second fluorescent particles (36) which have at least one fluorescent substance that emits green light and the average particle size of which ranges from 0.6 μm to 2.8 μm or from 1 μm to 4 μm, and third fluorescent particles (38) which have at least one fluorescent substance that emits blue light and the average particle size of which ranges from 1 μm to 4 μm.
Abstract:
A lamp including a first and second lamp substrate with a first and second external electrode, respectively, and a first and second internal phosphor coating, respectively, wherein the first phosphor coating is a phosphor monolayer. A method of manufacturing a lamp, including screen-printing a phosphor monolayer on a first lamp substrate; screen-printing a phosphor layer on a second lamp substrate; joining the phosphor-coated faces of the first and second lamp substrates together with a seal; and joining a first and second electrode to the uncoupled exterior faces of the first and second lamp substrates, respectively.
Abstract:
An energy saving gas discharge lamp, and method of making same, is provided. The gas discharge lamp includes a light-transmissive envelope, and an electrode within the light-transmissive envelope to provide a discharge. A light scattering reflective layer is disposed on an inner surface of the light-transmissive envelope. A phosphor layer is coated on the light scattering reflective layer. A discharge-sustaining gaseous mixture is retained inside the light-transmissive envelope. The discharge-sustaining gaseous mixture includes more than 80% xenon, by volume, at a low pressure.
Abstract:
An energy saving gas discharge lamp, and method of making same, is provided. The gas discharge lamp includes a light-transmissive envelope, and an electrode within the light-transmissive envelope to provide a discharge. A light scattering reflective layer is disposed on an inner surface of the light-transmissive envelope. A phosphor layer is coated on the light scattering reflective layer. A discharge-sustaining gaseous mixture is retained inside the light-transmissive envelope. The discharge-sustaining gaseous mixture includes more than 80% xenon, by volume, at a low pressure.
Abstract:
A light-extraction apparatus for an optical-film lighting set having a visible-light coating include a transparent sealed body, a wide AOR (0 degree to 90 degrees) optical film for reflecting ultraviolet lights and a visible light layer. The transparent sealed body is formed as a hollow shell body to accommodate an ultraviolet light source. A supporting member coated with the optical film and the visible light layer is constructed to a wall of the shell body or inside the shell body. The visible light layer is consisted of monolayered fluorescent or phosphorescent particles, and the particles are evenly distributed to coat on the interior wall of the shell body or the supporting member inside the shell body in a sparse scattering manner. A fixed area ratio of the coverage of the particles to that of the inter-particle spacing is then provided to the visible light layer for obtaining a higher illumination performance.
Abstract:
A lamp including a first and second lamp substrate with a first and second external electrode, respectively, and a first and second internal phosphor coating, respectively, wherein the first phosphor coating is a phosphor monolayer. A method of manufacturing a lamp, including screen-printing a phosphor monolayer on a first lamp substrate; screen-printing a phosphor layer on a second lamp substrate; joining the phosphor-coated faces of the first and second lamp substrates together with a seal; and joining a first and second electrode to the uncoupled exterior faces of the first and second lamp substrates, respectively.