Abstract:
A wiring board (3) according to an embodiment of the present invention includes an inorganic insulating layer (11A); a first resin layer (12A) on one main surface of the inorganic insulating layer (11A); a second resin layer (13A) on another main surface of the inorganic insulating layer (11A); and a conductive layer (8) partially on one main surface of the second resin layer (13A), the one main surface being on an opposite side to the inorganic insulating layer (11A). The inorganic insulating layer (11A) includes a plurality of first inorganic insulating particles (14) which are bound to each other at a part of each of the first inorganic insulating particles and gaps (G) surrounded by the plurality of first inorganic insulating particles (14). A part of the first resin layer (12A) and a part of the second resin layer (13A) are located inside the gaps (G).
Abstract:
A circuit board is provided with a metal wiring layer 12 on at least one principal surface of a ceramic sintered body 11, wherein the above-described metal wiring layer includes a first region 12a which is in contact with the principal surface and which contains a glass component and a second region 12b which is located on the first region 12a and which does not contain a glass component, the thickness of the first region 12a is 35% or more and 70% or less of the thickness of the metal wiring layer 12, and the average grain size in the first region 12a is smaller than the average grain size in the second region 12b.
Abstract:
A forming method of a conductive pattern including a base material and a pattern of a composition gradient layer in which the composition continuously changes from a metal to a resin in a thickness direction from the farthest side to the base material toward the nearest side to the base material, includes: ejecting at least two kinds of ink compositions of an ink composition containing a metal and an ink composition containing a compound capable of being cured with active energy ray, or a polymer or oligomer, onto the base material by an inkjet method to fabricate the composition gradient layer.
Abstract:
In a layered structure having at least a substrate and a photosensitive resin layer or cured film layer formed on the substrate and containing an inorganic filler, the content of the inorganic filler in the photosensitive resin layer or cured film layer is lower in a surface layer region away from the substrate than in other region, so that a linear thermal expansion coefficient of the layer as a whole is maintained as low as possible. Preferably, the photosensitive resin layer or cured film layer comprises at least two layers having different inorganic filler contents, wherein the inorganic filler content in the layer on the surface side away from the substrate is lower than the inorganic filler content in the other layer. A photosensitive dry film containing the photosensitive resin layer is suitable for use as a solder resist or an interlayer resin insulation layer of a printed wiring board.
Abstract:
A joint structure of the present invention includes a conductive member containing copper as a major component thereof, an electrode member containing copper as a major component thereof, and a joint portion formed by fusion welding the conductive member and the electrode member with a brazing material containing tin as a major component thereof and containing substantially no copper, wherein the amount of copper atoms contained in the alloy in the central part of the joint portion is higher than that in the outer circumference part.
Abstract:
Provided, are multi-layer chip carriers comprising an asymmetric cross-linked polymeric dielectric film, and processes for making the chip carriers.
Abstract:
There is provided a multilayer ceramic substrate including a conductive via of a dual-layer structure capable of preventing loss in electrical conductivity and signal. The multilayer ceramic substrate includes: a plurality of dielectric layers; and a circuit pattern part formed on at least a portion of the dielectric layers, the circuit pattern part including at least one conductive via and conductive pattern, wherein the at least one conductive via comprises an outer peripheral portion and an inner peripheral portion, the outer peripheral portion formed along an inner wall of a via hole extending through the dielectric layers and formed of a first conductive material containing a metal, and the inner peripheral portion filled in the outer peripheral portion and formed of a second conductive material having a shrinkage initiation temperature higher than a shrinkage initiation temperature of the first conductive material.
Abstract:
In a multilayer ceramic substrate manufactured by a non-shrinking process, a bonding strength of an external conductive film formed on a primary surface of the multilayer ceramic substrate is increased. After a laminate of a multilayer ceramic substrate is formed from first ceramic layers and second shrinkage suppressing ceramic layers, and an underlayer is formed along one primary surface of the multilayer ceramic substrate, an external conductive film is formed on the underlayer. A non-sintering ceramic material powder in a non-sintered state is included in both the external conductive film and the underlayer, and this non-sintering ceramic material powder is fixed due to diffusion of a glass component from the first ceramic layers.
Abstract:
A power element mounting substrate including a circuit layer brazed to a surface of a ceramic plate, and a power element soldered to a front surface of the circuit layer, wherein the circuit layer is constituted using an Al alloy with an average purity of more than or equal to 98.0 wt % and less than or equal to 99.9 wt %, Fe concentration of the circuit layer at a side of a surface to be brazed to the ceramic plate is less than 0.1 wt %, and Fe concentration of the circuit layer at a side of the surface opposite to the surface to be brazed is more than or equal to 0.1 wt %.
Abstract:
The invention is directed to substrates for electronic circuitry. The substrates of the invention have a first polyimide layer having a functional filler and a second polyimide layer having a functional filler. The first layer is non-identical to the second layer, and a surface of the first layer is in contact with and is directly bonded to a surface of the second layer. Filler from each layer extends into the interface between the two layers, and a plurality of covalent bonds are present between the first and second functional layers that chemically bond the two layers together to provide a reliable, predictable multifunctional substrate for electronic circuitry with improved performance relative to polyimide layers bonded together by an adhesive.