Abstract:
A circuit board includes a plurality of conductive layers, at least one group of vias, a number of second vias, at least one power supply element, and at least one electronic element. Each conductive layer includes a conductive portion. Both the first vias and the second vias are defined through the conductive layers and electrically connected each conductive layers. The at least one group of first vias surrounds the at least one power supply element. The second vias are arranged along the side of the conductive portion, and positioned between the power supply element and the electronic element. Current from a power supply element flows to the inner conductive layers through the group of surrounding first vias. Current transmission on each conductive layer continuously flows to another conductive layer having a lower resistance through the second vias during transmission.
Abstract:
Discussed is a Flexible Printed Circuit (FPC). The FPC includes a plurality of touch lines respectively connected to a plurality of touch electrode lines, a first film adhered to the touch lines, a second film overlapping the first film at an upper end surface of the first film and covering the touch lines, and a feedback compensation signal electrode adhered to a lower end surface of the first film, and receiving a feedback compensation signal for removing noise.
Abstract:
Provided is a multilayer wiring board including a plurality of signal layers and ground layers. The multilayer wiring board includes: a first differential wiring wired to a third signal layer; and a second differential wiring wired to a ninth signal layer disposed above the third signal layer. The multilayer wiring board includes a first differential signal via and a second differential signal via that are connected to the first differential wiring. The multilayer wiring board includes a third differential signal via which is connected to the second differential wiring and a stub of which is terminated above the third signal layer. The multilayer wiring board includes a fourth differential signal via which is connected to the second differential wiring and a stub of which is terminated above the third signal layer, the first differential wiring wired to pass between the fourth differential signal via and the third differential signal via.
Abstract:
A capacitor includes at least two electrode layers opposite to each other and a dielectric layer positioned between the at least two electrode layers. The at least two electrode layers have opposite polarities. Each electrode layer includes a positive electrode and a negative electrode. The positive electrode includes a plurality of first coupling portions spaced substantially evenly and arranged in parallel. The negative electrode includes a plurality of second coupling portions spaced substantially evenly and arranged in parallel. The positive electrode and the negative electrode of each electrode layer are coplanar, and the plurality of first coupling portions interlace with the plurality of second coupling portions.
Abstract:
A disk drive is disclosed comprising a disk, a head actuated over the disk, a preamp, and an interconnect for coupling the head to the preamp. The interconnect comprises a first transmission line stacked with a second transmission line, and a dielectric between the first transmission line and second transmission line. The transmission lines form an approximation of at least one inductor/capacitor ladder network and an approximation of at least one inductor/capacitor lattice network. The lattice network comprises a first leg and a second leg, and a cross-over hub for interconnecting the first leg and the second leg.
Abstract:
A printed circuit in which, in going from one end to another, a same conductive line is wound successively: around the first winding axis to form at least one half-turn of a first coil, then around the second winding axis to form at least one half-turn of a second coil, then around the first winding axis to form at least one half-turn of a first coil, then around the second winding axis to form at least one half-turn of a second coil.
Abstract:
A first insulating layer is formed on a suspension body. A write wiring trace is formed on the first insulating layer. A second insulating layer is formed on the first insulating layer to cover the write wiring trace. A write wiring trace and read wiring traces are formed on the second insulating layer. The write wiring trace is arranged above the write wiring trace. The write wiring trace includes a conductor layer and reinforcing alloy layers. The reinforcing alloy layers are sequentially formed to cover an upper surface and side surfaces of the conductor layer.
Abstract:
Manufacturing circuits with reference plane voids over vias with a strip segment interconnect permits routing critical signal paths over vias, while increasing via insertion capacitance only slightly. The transmission line reference plane defines voids above (or below) signal-bearing plated-through holes (PTHs) that pass through a rigid substrate core, so that the signals are not degraded by an impedance mismatch that would otherwise be caused by shunt capacitance from the top (or bottom) of the signal-bearing PTHs to the transmission line reference plane. In order to provide increased routing density, signal paths are routed over the voids, but disruption of the signal paths by the voids is prevented by including a conductive strip through the voids that reduces the coupling to the signal-bearing PTHs and maintains the impedance of the signal path conductor.
Abstract:
A communication jack having crosstalk compensation features for overall crosstalk interference reduction is disclosed. In one embodiment, the jack is configured to receive a plug to form a communication connection, and comprises jack contacts disposed in the jack, with each contact having at least a first surface and a second surface. Upon the plug being received by the jack, the plug contacts interface with the first surface of the jack contacts. The jack further includes a first capacitive coupling connected between two pairs of jack contacts to compensate for near end crosstalk, with the first capacitive coupling being connected to the pairs of jack contacts along the second surface adjacent to where the plug contacts interface with the jack contacts. A far end crosstalk compensation scheme is also set forth.
Abstract:
A wiring board of the present invention has pads disposed in a plurality of rows including: first row pads each being connected to a respective one of the connection wires that is long in length; and second row pads (30b) each being connected to a respective one of the connection wires that is shorter in length than that of first connection wires (10a) connected to the first row pads, each of the first connection wires (10a) being provided not in a region between adjacent ones of the second row pads (30b) but in a lower layer region of the second row pads (30b), in such a manner that at least a first insulating layer (20a) is sandwiched between the second row pads (30b) and the first connection wires (10a), and 0.8≦W1/W2≦1, where W1 is a line width of the first connection wires (10a) in the lower layer region of the second row pads (30b), and W2 is a width of the second row pads (30b).