Abstract:
Provided are connection structures for a microelectronic device and methods for forming the structure. A substrate is included having opposing surfaces and a plurality of holes extending through the surfaces. Also included is a plurality of electrically conductive posts. Each post extends from a base to a tip located within a corresponding hole of the substrate. An additional substrate may be provided such that the base of each post is located on a surface thereof. Additional electrically conductive posts may be provided having tips in corresponding holes of the additional substrate. Optionally, a dielectric material may be placed between the substrate and the posts.
Abstract:
A printed circuit board (PCB) assembly having a plurality of circuit layers including outer layers and intervening layers with through-vias and micro-vias used to translate a portion of the signal connections of the grid, thereby creating a set of diagonal routing channels between the vias on internal layers of the board and a BGA package mounted on the printed circuit board.
Abstract:
A circuit substrate includes an inductor element and a reference plane. The inductor element includes a first conductive column, a second conductive column, a first trace, and a second trace. The first and second conductive columns penetrate the circuit substrate from a first surface to a corresponding second surface. The first conductive includes a left conductive column and a right conductive column. The second conductive column is adjacent to one side of the first conductive column. The first trace electrically connects a first lower portion of the left conductive column and a second lower portion of the second conductive column. The second trace electrically connects a first upper portion of the right conductive column and a second upper portion of the second conductive column. The reference plane is disposed on the second surface. Accordingly, the magnetic line of force produced by the inductor element is parallel to the reference plane.
Abstract:
A series of plated through hole (PTH) vias are interconnected by traces that alternate between a top surface and a bottom surface of a dielectric board. The PTH vias in the series can be positioned to create a collinear inductive filter, a coil-type inductive filter, or a transformer. Multiple, electrically isolated series of interconnected PTH vias can be used as a multi-phase inductive filter in one embodiment. In another embodiment, multiple series of interconnected PTH vias are electrically connected by a linking portion of conductive material, resulting in a low-resistance inductive filter. Ferromagnetic material patterns can be embedded in the dielectric board to enhance the inductive characteristics of the interconnected via structures. In one embodiment, a closed-end pattern is provided with two series of interconnected vias coiling around the pattern, resulting in an embedded transformer structure. A method of producing an interconnected series of PTH vias includes providing a dielectric board having a series of holes. In some embodiments, the board includes an embedded ferromagnetic material pattern. The holes and the top and bottom surface of the dielectric board have a conductive material thereupon. Portions of the conductive material are selectively removed, resulting in the embedded inductive filter and/or transformer structure.
Abstract:
An exemplary liquid crystal display device (200) includes a liquid crystal display panel (21), and a flexible printed circuit (2) joined to the liquid crystal display panel. The flexible printed circuit includes a substrate (20). The substrate includes a plurality of first conductive lines (210) and second conductive lines (230). The first conductive lines include a plurality of first patches (220). The second conductive lines include a plurality of second patches (240). The first patches are arranged side by side oppositely oriented relative to each other in alternating fashion. The second patches are arranged side by side oppositely oriented relative to each other in alternating fashion.
Abstract:
A printed circuit board (PCB) having a three-dimensional spiral inductor, which includes a plurality of insulating layers and conductor layers. The PCB comprises a plurality of coil conductor patterns made of conductive material and shaped into strips, which is provided on the plurality of conductor layers, respectively, such that the plurality of coil conductor patterns are parallel to each other and positioned on the same plane perpendicular to the conductor layers, and in which each of the plurality of coil conductor patterns is longer than an adjacent inner coil conductor pattern.
Abstract:
A wireless communications device can include a power amplifier that is configured to transmit information to a wireless communications network during a first time interval and configured to avoid transmitting information during a second time interval. A circuit substrate is coupled to the power amplifier and a power source is configured to provide power to the power amplifier. First and second conductor are coupled to the power amplifier and to the power source, and have respective overlapping and non-overlapping portions on the circuit substrate.
Abstract:
In a coupling adjusting structure for a double-tuned circuit according to the present invention, first and second coils are configured such that a pair of first conductive patterns formed on a first surface of a printed circuit and a corresponding pair of second conductive patterns formed on a second surface of the printed circuit board are connected via corresponding connecting conductors, thereby making the first and second coils low and thin. Also, one end of the first coil and the corresponding end of the second coil are disposed close to each other, a first ground conductive pattern is disposed at least on the first surface of the printed circuit, and a first jumper connected to the first ground conductive pattern is disposed between the first and second coils so as to adjust an inductive coupling of the double-tuned circuit, thereby achieving a coupling adjusting structure for a double-tuned circuit whose inductive coupling is adjustable.
Abstract:
A method and apparatus are provided for compensating propagation delay in an electronic system relating to corresponding signals becoming skewed by variations in the dielectric materials over which the respective, corresponding signals travel. Compensation for the propagation delay is done by selecting printed circuit boards which each have one side comprised of a dielectric substrate material exhibiting a first dielectric constant and another side comprised of a dielectric substrate material exhibiting a second dielectric constant. By transmitting each of the corresponding signals across a side of a printed circuit board with a first dielectric constant and a side with a second dielectric constant, the signals are each delayed substantially the same by the effects of the dielectric constant, reducing the skew to zero. In specific application, the printed circuit boards are most easily matched by selecting printed circuit boards from a common printed circuit board panel or array.
Abstract:
A coupling adjusting structure for a double-tuned circuit contains first and second coils that are configured such that a pair of first conductive patterns formed on a first surface of a printed circuit and a corresponding pair of second conductive patterns formed on a second surface of the printed circuit board are connected via corresponding connecting conductors. One end of the first coil and the corresponding end of the second coil are disposed close to each other. A first ground conductive pattern is disposed at least on the first surface of the printed circuit. A first jumper connected to the first ground conductive pattern is disposed between the first and second coils to adjust an inductive coupling of the double-tuned circuit.