Abstract:
This invention relates to temperature-corrected photoluminescence spectroscopy which may be applied to semiconductors and, in particular, photovoltaic films.
Abstract:
A fluorescence life measuring apparatus, a fluorescence life measuring method and a program are described that can obtain fluorescence life using a simple configuration. The apparatus moves a stage on which a fluorescent material to be measured is placed, irradiates with excitation light the fluorescent material placed on the stage moved at a constant speed, images afterglow of emitted fluorescence caused by the excitation light, and uses an imaged image to detect the elapsed time from a fluorescence position and afterglow strength at a target afterglow position and calculate the fluorescence life.
Abstract:
A fluorescence light scanning microscope (2) comprises a light source providing excitation light (8) for exciting a fluorophore in a sample to be imaged for spontaneous emission of fluorescence light, and suppression light (7) for suppressing spontaneous emission of fluorescence light by the fluorophore on a common optical axis (4), the suppression wavelength differing from the excitation wavelength; an objective (19) focusing both the excitation (8) and the suppression (7) light to a focus point; a detector (21) detecting fluorescence light (11) spontaneously emitted by the fluorophore; and a chromatic beam shaping device (1) arranged on the common optical axis (4), and including a birefringent chromatic optical element (3) adapted to shape a polarization distribution of the suppression light (7) such as to produce an intensity zero at the focus point, and to leave the excitation light such as to produce a maximum at the focus point.
Abstract:
Methods and systems for high-confidence utilization of datasets are disclosed. In one embodiment, the method includes selecting a metric for determining substantially optimal combination of true positives and false positives in a data set, applying an optimization technique, and obtaining, from the results of the optimization technique, a value for at least one optimization parameter, the value for at least one optimization parameter resulting in substantially optimal combination of true positives and false positives. A number of true positives and a number of false positives are a function of the one or more optimization parameters.
Abstract:
The underlying objective is to create an optoelectronic sensor system which illuminates the specimen homogenously and only allows produced fluorescent light to reach the photoactive layer. The objective is achieved substantially by creating a total reflection layer for the introduced light before or above the optoelectronic sensor layer. This can be applied in all fields in which microarray biochips are used.
Abstract:
A method for determining a critical angle of total reflection based upon images captured at different angles of incidence of a light beam includes illuminating a sample with an excitation light beam, capturing images of at least part of the sample at a plurality of different angles of incidence of the excitation light beam, and determining a critical angle of total reflection at an interface of the sample based upon analysis of the images. An apparatus for determining a critical angle of total reflection at an interface of a sample includes a light source arrangement to illuminate a sample with an angle of incidence, an image capturing arrangement to capture an image of the sample, and a processing arrangement to determine the critical angle of total reflection at an interface of the sample on the basis of an analysis of images captured at a plurality of different angles of incidence.
Abstract:
A scintillator panel which has achieved enhanced sharpness and sensitivity is disclosed, comprising on a first support a phosphor layer comprising phosphor columnar crystals formed by a process of vapor phase deposition and containing a parent component of cesium iodide (CsI) and an activator of thallium (Tl), and the phosphor layer comprising a first layer of a CsI layer which is in the bottom portion of the phosphor layer and does not contain any activator of thallium, and on the first layer, a second layer of a CsI—Tl layer which contains the activator of thallium and exhibits not more than 32% of a coefficient of variation of concentration of thallium in the direction of thickness.
Abstract:
A method of image analysis creates super-resolution images from images with high densities of fluorophores by processing a movie in which the fluorescent molecules or particles are photobleaching or blinking. The method looks for the individual photobleaching events that can be located with high resolution (nm to tens of nanometers scale). The positions of the photobleaching or blinking events are then drawn in a composite image that is at a much higher resolution than the original fluorescence movie.
Abstract:
Provided is a fluoroscopy apparatus comprising a white-light-image generating section that generates a white-light image of observation target, a fluorescence-image generating section that generates a fluorescence image of the observation target, a fluorescence-image correcting section that normalizes the fluorescence image with the white-light image, a displacement calculating section that calculates the displacement of the observation target from a plurality of white-light images generated at time intervals, a region-size calculating section that calculates the size of a region having a fluorescence intensity higher than or equal to a predetermined threshold value from the fluorescence image, and a control unit that controls the fluorescence-image correcting section so that, when the displacement of the observation target relative to the size of the region is larger than or equal to a predetermined proportion, normalization of the fluorescence image is stopped.
Abstract:
A fluorescent material for a scintillator to be used in a radiation detector is provided. The fluorescent material is designed to have a high fluorescent intensity and a low level of afterglow a short term of 1 to 300 ms after the termination of X-ray radiation.The above fluorescent material contains Ce as an activator. In addition, the material must contain at least Gd, Al, Ga, O, Fe, and a component M. The component M is at least one of Mg, Ti, and Ni. In addition, the composition of the material must be expressed by the general formula: (Gd1-x-zLuxCez)3+a(Al1-u-sGauScs)5−aO12 wherein 0≦a≦0.15, 0≦x≦0.5, 0.0003≦z≦0.0167, 0.2≦u≦0.6, and 0≦s≦0.1, and wherein, regarding the concentrations of Fe and M, Fe: 0.05≦Fe concentration (mass ppm)≦1, and 0≦M concentration (mass ppm)≦50.